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Series Preface 

My editorial objective in this Series is to present to the scientific public a collection of texts 

that satisfies one of two criteria: the systematic presentation of a specialised but important 

topic within materials science or engineering that has not previously (or recently) been the 

subject of full-length treatment and is in rapid development: or the systematic account of a 
broad theme in materials science or engineering. The books are not, in general, designed as 

undergraduate texts, but rather are intended for use at graduate level and by established 

research workers. However, teaching methods are in such rapid evolution that some of the 

books may well find use at an earlier stage in university education. 

I have long editorial experience both in covering the whole of a huge field-physical 
metallurgy or materials science and technology-and in arranging for specialised subsidiary 

topics to be presented in monographs. My intention is to apply the lessons leamed in 40 

years of editing to the objectives stated above. Authors have been invited for their up-to- 

date expertise and also for their ability to see their subject in a wider perspective. 

I am grateful to Elsevier Ltd., who own the Pergamon imprint, and equally to my 

authors and editors, for their confidence, and to Mr. David Sleeman, Publishing Editor, 

Elsevier Ltd for his efforts on behalf of the Series. 

Herewith, I am pleased to present to the public the seventh title in this Series, on a topic 
of great current concern. 

ROBERT W. CAHN, FRS 
(Cambridge University, UK) 
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Preface 

This book focuses on the structural determination of crystalline solids with extensive 

disorder. Well-established methods exist for characterizing the structure of fully crystalline 

solids or fully disordered materials such as liquids and glasses, but there is a dearth of 
techniques for the cases in-between, crystalline solids with internal atomic and nanometer 

scale disorder. The purpose of this book is to discuss how to fill the gap using modern tools 

of structural characterization. While this subject might sound rather narrow, the fact is that 

today this problem is encountered in the structural characterization of a surprisingly wide 
range of complex materials of interest to modem technology and is becoming increasingly 
important. 

General wisdom has always commanded that being pure and simple would not 

necessarily be good, and complexity could provide a better alternative. This is particularly 

true when it comes to materials. An airplane made of pure aluminum or a pure iron sword 
would invite a disaster, since pure metals are soft and easily deformed. Copper and other 

elements are added to aluminum to form a complex multi-phase alloy to build an airplane. 

Refined weapons in the Middle Ages such as Damascus swords and Japanese swords are 

made of intricately complex iron and iron carbide composites with delicate microstructures. 

Today modem technology demands more and more sophisticated complex materials. 

While classic materials mentioned above are complex at the length-scale of micrometer, 

today engineering at the atomic scale or nanometer scale is becoming required for high- 

performance functional materials. For instance, artificial superlattices or multilayered thin 
films are atomic scale composites. Carbon nano-tubes and nano-crystals of various 

materials are other examples of a nanometer scale structures that can be engineered into 

highly complex nano-composites. These nano-engineered materials are closely related to 

nanotechnology that is rapidly becoming fashionable even among the public. Usually 

nanotechnology means technology to form objects of nano-meter size out of relatively 
simple materials, such as silicon and carbon. However, nano-scale engineering of the 

atomic structure of materials should also be considered as a very important and emerging 

ingredient of nanotechnology. For instance complex oxides, such as the copper oxide 

compounds that show high temperature superconductivity or manganese oxide compounds 
exhibiting giant magnetoresistivity, have complicated atomic and nanometer level 

structures, and engineering such complex structure is a major focus of materials 
research in these fields. 

Why are today's technologically advanced materials complex at the atomic and 
nanometer level? A part of the answer is that we discovered the synergy of competing 

forces. Just as the British Empire maintained its preeminence by the principle of divide 

and conquer, a solid is more susceptible to external forces when two or more internal 

vii 
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forces are competing and balanced. Many high-sensitivity functional materials are made 

precisely that way. As will be discussed in detail later in this book such competing forces 
produce a complex atomic structure, even when the structure is crystalline in average. To 
understand and design materials with competing forces it is crucial that we have precise 

knowledge of the complex atomic structure. However, that is not so simple a task, since 

the tools widely available at present often do not work adequately for this purpose. 

The standard tool to study the atomic structure is crystallography but conventional 
crystallography was not developed with such complex materials in mind. A periodic lattice 

is a prerequisite for a crystallographic study. However, small randomness and local 
deviations from perfect periodicity often characterize complex materials, and they usually 
are crucial to their properties. Thus determining these deviations is an essential part of 
structural characterization. In extending crystallography to the study of these imperfectly 

periodic materials serious compromises have to be made, rendering the results inaccurate. 
What we need is another tool, a local probe, to study the structure of such complex 
materials and understand how the structural features are related to the properties we desire. 

A number of such local probes exist. Most, such as x-ray absorption fine structure 
(XAFS) and nuclear magnetic resonance (NMR), give only very short-range 
information. Imaging methods such as transmission electron microscopy (TEM) and 

scanning probe microscopies, such as scanning tunneling microscopy (STM) and atomic 
force microscopy (AFM), are highly complementary to the bulk local probes. They yield 
compelling two-dimensional real-space pictures of thin samples in the case of TEM, or 
surfaces in the case of scanning probes, but do not yield bulk average information 

or atomic positions with high accuracy. In this book we discuss an alternative method of 
analyzing diffraction data without the assumption of lattice periodicity. It is the method 
of atomic pair-distribution function (PDF) analysis imported from the research field of 

non-crystalline materials. While crystallographic analysis takes into account only the 
Bragg peaks, which are tall and clearly visible in the diffraction pattern, the PDF method 
utilizes information buried in-between the Bragg peaks in the form of diffuse scattering, 
in addition to the Bragg peaks. The title of this book describes our focus on recovering 
important information from the data scattered underneath the Bragg peaks that are 

usually discarded in conventional crystallographic analysis. 

If the deviations in the atomic positions from perfect periodicity in nominally 

crystalline materials are sparse and far apart, they may be described as lattice defects. 
Various methods such as electron microscopy can accurately determine the nature of these 
defects in most cases. However, if the density of defects is high and they overlap each 
other, such a description is no longer useful. It may be better to consider the system to be 
locally non-crystalline, even though on the average there may be a long-range order. That 
is why the solution we offer to this problem is to import the concept and methodology of 

PDF analysis from the field of non-crystalline materials to that of crystalline materials. 
Non-crystalline materials such as liquids and glasses have no structural periodicity at all. 
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The atomic structure in such a system is usually described by the distribution of distances 
between two atoms, given as the PDF. 

For a long time the field of structural analysis in the materials sciences has been 
partitioned into two, crystalline and non-crystalline. There has been little cross talk of any 
significance between the two fields. However, the complex advanced materials we 

mentioned above are crossover materials between the two, and cannot be correctly studied 
without breaking down the barrier. The purpose of this book is to widen the crack or create 
yet another hole in the wall between the two fields, and to establish a gate. It is our hope 

that the gate is wide open to everybody and easy to pass through. Important recent 
developments making this crossover possible are the advent of synchrotron radiation 
sources and pulsed spallation neutron sources, and the availability of cheap high-speed 
computing. These advanced tools provide sufficient accuracy of measurement, and the 
quantitative analysis, necessary for the PDF method to be applied successfully to 

crystalline materials. As the use of these facilities becomes more widespread, more 
researchers have opportunities to practice such crossover techniques. 

A typical reaction to the PDF technique is that it is too complex for practical use. 
However, it is, conceptually, remarkably simple and with the advent of optimized beamlines 

and improved computer analysis programs it is becoming also straightforward to apply. This 
book is designed to introduce and explain the power and usefulness of the technique. A 

number of practical applications are presented in later chapters. It is also intended as a 
reference book. Some chapters (and many of the appendices) are correspondingly technical. 
A number of user-friendly and easy-to-use computer programs now exist for carrying out 

the analyses described here. This book should make these "black box" programs less black. 
The reader might want to skip the technical sections on a first reading. 

Another, completely opposite, reaction is that the PDF is just a Fourier transformation 
of the diffraction data, and does not provide any new information. First of all, the same data 
presented in a different way can greatly facilitate extracting useful information. Moreover, 

the PDF analysis requires accurate determination of the diffuse and background intensities, 
and through this analysis actually new information is garnered. In addition, it is very 
difficult to determine the difference between the average structure and local structure using 
conventional methods, while the PDF clearly displays it. 

In Chapter 1 we introduce the subject and describe the need for local probes in the 

structural studies of imperfect crystals, using some recent examples. Conventional 
crystallographic methods are briefly reviewed in Chapter 2, with emphasis on how disorder 

can be incorporated in crystallographic analysis and what the limitations are. The method 

of PDF analysis is introduced and discussed in depth in Chapter 3. Technical issues of data 
taking for accurate PDFs are summarized in Chapter 4, followed by the description of the 
method of data collection and analysis in Chapter 5. Modeling of the PDF by a three- 
dimensional structure is discussed in Chapter 6. Chapter 7 deals with lattice dynamics in 

the PDF, in particular the effect of localized lattice dynamics. We then discuss some of the 
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recent examples for which the PDF method has proven to be effective in the remaining 
chapters. Examples of the PDF of perfectly periodic crystals are given in Chapter 8, and 
those of nanocrystalline and highly defective crystals in Chapter 9. The local structure of 
solids with competing forces is discussed in Chapter 10, and new information that the PDF 
studies have revealed in the study of phase transition phenomena is discussed in Chapter 
11. Lastly some final remarks are made in Chapter 12 to conclude the book. 

As the primary reader of the book we have in mind advanced undergraduate students or 
beginning graduate students. We focused on getting the concepts across rather than 
describing full details of the technique, while we do go into some crucial details that may 
be difficult to garner from other professional journals and books. While the primary 
purpose of this book is to be a guide for the beginners in the PDF analysis of imperfect 
crystals, this book hopefully will be useful also to researchers who are already 
knowledgeable in PDF analysis, for instance with respect to the modern tools and 
advanced methods of analysis such as error analysis and modeling. In fact we hope this 
book will stimulate those who apply the PDF analysis only to liquids and glasses to 
consider its extension to disordered crystals. 

This book would have been impossible to write without the efforts of past and present 
members of the Egami group at the University of Pennsylvania, including Wojtek 
Dmowski, Brian H. Toby, Xiao Yan, Yoshio Waseda, Shian Aur, Susumu Nanao, Yoshio 
Suzuki, Wendy Spronson (Frydrych), Daniel D. Kofalt, Ruizhong Hu, H. David Rosenfeld, 
Despina A. Louca, Srdjan Teslic, Rob J. McQueeney, and Eugene Mamontov, and the 
Michigan State University group of Billinge, another Egami graduate, including Emil 
Bozin, I1-Kyoung Jeong, Pete Peterson, Xiangyun Qiu, Jeroen Thompson, Thomas 
Proffen, Valeri Petkov and Matthias Gutmann and Farida Mohiuddin-Jacobs. Their 
contributions are gratefully acknowledged. SJLB would also like to thank Antonio 
Bianconi and Naurang Saini for their gracious hospitality as he finished the book during his 
sabbatical year in Rome. The authors are equally thankful to a number of collaborators 
who directly or indirectly contributed to the fruition of the technique including, but not 
limited to, David L. Price, David E. Cox, Masatoshi Arai, Mike Thorpe, Phil Duxbury, 
Mercouri Kanatzidis, Tom Pinnavaia and George Kwei, and to the editor of the series, 
Prof. Robert W. Cahn, for his encouragements, patience and editing. Last but not the least, 
they are extremely thankful to their spouses, Sayuri Egami and Debby Billinge, and 
children for their understanding and support over many years. 

TAKESHI EGAMI 
University of Pennsylvania 

SIMON J. L. BILLINGE 
Michigan State University 

Summer 2002 
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Chapter 1 

Structure of Complex Materials 

1.1. CRYSTALLOGRAPHY AND BEYOND 

1.1.1 Complexity at the atomic and molecular level 

For a long time complexity has been a bad word for scientists. Simplicity has been the 
preferred choice, and pronouncing a problem complex was an artful way of giving up any 
attempt to find a solution. However, major changes are taking place today, placing 
complexity at the forefront of research in various fields including materials research. 
Historically, the first materials humankind used were complex materials made by nature, 
such as wood and animal bones. But after they discovered the art of extracting pure 
materials such as copper and iron, simple materials started to prevail. This tendency was 
greatly accelerated during the industrial revolution that enabled production of simple 
materials in abundance at a low cost. 

However, complex materials are on the come-back, since in recent years technological 
progress made it possible to produce man-made complex materials with superior 
properties. Composites such as graphite-boron are used in all kinds of sporting equipment 
from golf shafts to tennis rackets. Multi-layered thin films are used in magnetic heads of 
disk-memories, and computer chips are very complex constructs of silicon, oxide films and 
metal interconnects. While many of these artificial structures are composed of relatively 
simple materials built into a complex structure, other materials are atomistically complex. 
Many of the modem electronic materials that exhibit remarkable properties such as high- 
temperature superconductivity, colossal magnetoresistivity, or high dielectric response, 
have intrinsically complex atomic and nano-scale structures that appear to be critically 
important to their performance. Polymers are structurally highly complex, with millions of 
atoms constituting chain molecules, which are assembled in a complex morphology, partly 
crystalline and partly amorphous. Humankind has started with complex natural materials, 
developed civilization with simple man-made materials, and is now moving forward to 
close the circle with man-made complex materials. 

However, while polymers are in many ways similar to biological materials, they are still 
much simpler than proteins. Biological protein molecules are enormously complex; they 
self-organize with their unique ways of folding up. The functionality of a living organism 
comes from a multitude of folded proteins, each with a very precise and unique function. 
For example, the enzyme desaturase is found in plants. It has the job of desaturating fat 
molecules used in the plant's cell walls in order to maintain their flexibility when the 
weather gets cold. It does nothing else but its unique, directed, function is of critical 
importance to the survival of the plant. There is a clear universal trend; the more directed 
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the functionality of a material, the greater its structural complexity. To harness this law to 

our benefit in future man-made materials it is clearly necessary to have control over 
complex structures and to be able to characterize them in detail. 

1.1.2 Local view of  the structure 

One of the major reasons why nano-scale structural complexity is important to advanced 

functional materials is that solids which contain competing internal forces are often highly 

sensitive, and these forces result in a complex structure. If two or more forces are 

competing against each other, the balance can be tipped by a small external force and the 

system responds with vigor. An example is the colossal magnetoresistive (CMR) oxides 

which have recently been studied extensively. The CMR materials are located in the phase 
diagram right at a metal-to-insulator (MI) transition, and an applied magnetic field greatly 

increases their conductivity by inducing a transition from an insulator to a metal. In these 

materials there are forces that are competing to localize and delocalize charge carriers, and 

they are balanced right at the MI transition. A magnetic field helps the delocalizing force 
and propels the system into the metallic state. 

Such competition usually produces a complex structure. The competition can be 

manipulated by changing composition, temperature, as well as the nano-scale structure. For 

example to induce the MI transition at a particular temperature, the charge density in the 

material is adjusted chemically by randomly substituting one element for another. When 

there are competing forces at the atomic scale, the structure will reflect the conflict, for 

instance by introducing a slight distortion. If this occurs in a random alloy, the distortion will 

vary from one atomic site to the next, resulting in a highly aperiodic structure with nano- 

scale variations. As will be discussed later in this book as an example, the CMR oxides are 

made up of nano-scale regions of insulating and metallic domains, each having a slightly 

different local distortion in the structure. In addition these regions are not necessarily static, 

but could be moving dynamically. Therefore we have to consider not only various length- 

scales, but various time-scales as well. However, since these dynamics are usually not 

accessible by X-ray scattering, in this book we focus mainly on the static or instantaneous 

structure, and only one chapter will be devoted to the dynamic phenomena observed by 
neutron inelastic scattering. 

As a result of such competition these complex materials have a structure that locally 

deviates from the perfect crystal structure, even when they may appear superficially 

crystalline. In real life as well a complex person is always more interesting than a simple 

one, since such a person is unpredictable. A perfectly periodic crystal may be beautiful in 

some sense, but is totally predictable and can be extremely boring; even the most beautiful 

theme of Mozart would become boring if it were repeated a million times! Modern 
complex materials, on the other hand, are far from boring. 

In studying such complex crystals with local deviations we need to take two distinct 

points of view. One is a global view and the other is a local view. They are like national 
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statistics and personal reports in describing an event such as a war between nations. The 

death tolls are certainly needed to grasp the scale and economic impact of the war, but 
novels such as 'War and Peace', 'All Quiet on the Western Front', 'For Whom the Bell 

Tolls', or even 'Gone with the Wind' tell us more vividly what really happened at a human 

level and what the war meant to individual people. The average structure determined by 

crystallography presents a global view of the structure. However, since the real interac- 

tions are taking place at a local level, they are more directly related to the local structure, 

which can only be studied by local probes. In the case of well-ordered crystals the 

distinction is irrelevant. The global structure also reveals the local structure. However, as 

we describe in this book, this is no longer the case when local distortions are present in 

which case the local structure must be studied directly in conjunction with the global 

structure. 
This distinction has a direct implication for the method of theoretical analysis as well. 

The global view in this case is the simple mean-field approximation (MFA), in which 

numerous competing forces are volume-averaged into two or more representative 

competing forces. The conflict is then assessed at a global scale. However, in a complex, 

nonlinear system the conflict often remains local. In order to describe such local conflicts 

the average structure is nearly powerless, and we have to know the precise local structure 

where the conflicts take place. 
The problem of competing forces in complex systems has interesting political and 

sociological analogies. G.W.F. Hegel (1770-1831) was probably the first European 

philosopher who recognized the dynamic and creative effect of competition. Marxism has 

the Hegelian philosophy as its basis, but in its application the complex sociological 

competition was abstracted as the struggle between two social classes. This is the 
philosophical equivalent of taking the mean field approximation. An irony of this is that, in 

the implementation of Marxism in the communist societies of the 20th century, 

competition was essentially eliminated. In large part this was at the root of the demise 

of communism since competition is the vital force that drives development, as Hegel 
originally pointed out. In materials, the competition between comparable forces gives rise 

to dynamic and interesting effects. These effects are primarily local, varying sharply from 

atom to atom. As in the case of Marxism, taking the MFA and considering only the global 

effects may mask the important underlying local physics. In this case a study of complex 

competing forces in solids has to start at a local level. The condition of balance between 
competing forces should be evaluated locally rather than globally, just like voting to elect 

local representatives in a democracy. The macroscopic properties are determined as a 

consequence of interactive accumulation of local properties. That is why the study of 

local structure is ever more important in understanding complex structures containing 

competing interactions. 
Depending on the length-scale of the complexity, different tools are required to 

investigate the state of such complex structures. Since we focus on complexity in 



Underneath the Bragg Peaks 

the structure at the atomic to nanometer  (10 - 9 - 1 0 1 ~  m) scale, the methods to use are X-ray 

and neutron diffraction techniques as well as computer modeling. However, the regular 

crystallographic methods of structural analysis are not going to be sufficient in studying 

these complex materials, since the crystallographic method a priori assumes perfect 

lattice periodicity. Actually, strictly speaking, even a perfect crystal is not truly periodic, 

because of quantum-mechanical and thermal vibrations. If one takes a snapshot of the 

structure, the crystal symmetry is gone, including the translational symmetry. As we will 
discuss later, in the case of harmonic lattice vibrations the Debye-Waller approximation 

does an excellent job of recovering the symmetry. However, in complex structures the 

Debye-Waller  approximation usually fails, and we have to determine local structural 

details by using a different approach. Another philosophical point is that we have to accept 

a probabilistic description, rather than a deterministic description, to describe the structure. 

For a perfect crystal translational symmetry works the miracle of Bragg's law and reduces 

the number of parameters to describe the structure to a precious few. In complex materials 

the structure is often described in terms of probabilities and parameters to specify these 
probabilities. 

Both of these points suggest that some fundamental departures from crystallography are 

required to know the true structure of complex materials. However, we are creatures of 

habit, and too often we rely upon crystallography to describe the structure of materials, no 

matter how complex they are. In this book we will first discuss how dangerous such a 

practice is, introduce the alternative local tools of structural study, and go over several 

examples to illustrate the purpose of the local structural study. Reflecting the two 

philosophical points mentioned above in our new approach we will not assume periodicity, 
and the structure will be described statistically. 

1.1.3 Shadow of Bragg's law: Why knowing the crystal structure is not sufficient 
Bragg's law is the foundation of crystallography, one of the first subjects that an 

undergraduate student in materials science or condensed matter physics learns in class. It is 

so basic and taken so completely for granted that we tend to forget how powerful this law 

really is. However, it is a truly mighty magic wand. One way of describing the atomic 

structure of a material is to specify the position of each atom. But if a piece of crystal has 
10 23 atoms, in order to specify the position of these atoms one would need 3 x 10 23 

numbers describing the x, y, and z coordinates of each atom. If one goes about determining 

these positions atom by atom, it will take forever to accomplish such a task. However, by 

using Bragg's law based upon the translational symmetry these 3 x 10 23 numbers can be 

reduced to a small set of numbers specifying the lattice symmetry and atomic positions 
within the unit cell. 

Also by applying Bragg's law, the lattice constant can be determined routinely with 

accuracy exceeding 10 -5 A. This is, however, an amazing feat, since usually to measure a 

length with such accuracy requires the use of a probe with a comparable wavelength 
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(A -- 10 -5 ,~). If we use a gamma-ray its energy must be over 1 GeV, and if we use an 

electron the energy necessary is over 40 GeV. In either case one has to use major particle 

accelerators costing billions of dollars to produce probes with such energy. But with the 

use of Bragg' s law this is achieved with a small, inexpensive, 50 keV X-ray generator. It is 

indeed magic. 

The secret to this magic can be uncovered by going back to basics. Since the success of 

Bragg's law has been so spectacular we tend to forget that the crucial presumption for 

Bragg's law is the periodicity of the crystal lattice. Because of the translational symmetry 

the description of the crystal structure is reduced to specifying the symmetry group and one 

or a few lattice parameters, a, b, c. However, by the diffraction measurement we actually 

measure not the lattice constant, but the lattice coherence length, ~: = Na. If the uncertainty 

in ~: is A, the uncertainty in a is A/N, which can easily be as small as 10-5 ,~ if A = 1 ,~ and 
N =  105. 

The lattice periodicity is crucial to the success of Bragg's law. If the structure of a 

crystal is not perfectly periodic we cannot reap the benefit of Bragg' s law and we then have 

to face the unpleasant reality of describing the structure in other ways. Again, trying to 

determine all the atomic positions is out of the question. If the deviations from perfect 

crystallinity are small in number, the concept of lattice defects is often useful. Also if the 

deviations are smoothly varying in space they may be described by elasticity theory. 

Several methods have been developed in crystallography to deal with limited amounts of 

disorder, as we will discuss in Chapter 2. However, in some cases, the deviations are so 

pervasive that neither of these concepts and remedial methods is sufficient. A more 

pertinent approach is to leave the familiar protection of Bragg' s law behind, and directly 

face the complex and unfamiliar reality. The precedent for this kind of study is found in the 

research field of non-crystalline materials. 

1.1.4 The methods of local crystallography 
Glasses and liquids have no structural periodicity, and yet their atomic structure is not 

altogether random as in gases. What does it mean, then, to know the structure? Specifying 

all the atomic positions is not only impractical, but also useless. Even if we were given a 

huge table of numbers containing 3 • l0 23 atomic coordinates, we would be completely 

overwhelmed and would not be able to comprehend and use such information. The amount 

of information is simply too big. Intelligence, on the other hand, means the capability to 

select the essential pieces out of a vast sea of information, and to reorganize them into a 

new meaningful statement called understanding. As we go through our lives we experience 

a huge number of events. Experiences themselves, however, would not make us wise. Only 

after reflecting upon the experience and deducing the essential message from these 

experiences, do we learn something from life. 

The purpose of structural analysis is to relate the structure to the properties so that we 

can understand the properties from the atomistic point of view. This understanding can 
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lead to improvement of the material or creation of new ones with better properties. Clearly 

the properties are not determined by the absolute position of each atom, but by the relative 

positions of the atoms which are close enough to have some interaction. In other words 

local atomic environment, the relative positions of the near neighbor atoms, is what we 

have to know in deliberating about the properties of the material. From this point of view, 

the crystal symmetry, so highly revered in the world of crystallography, may not be as 

important as is often portrayed. If the distortion that breaks the symmetry is extremely 

small, the effect on the properties may be very small, even if strictly speaking the 

symmetry is altered. On the other hand, large aperiodic local displacements of atoms 

usually have serious consequences on the properties, even when they do not change the 

average symmetry. 

The relative atomic positions, or the interatomic positional correlations, can be 

described by a set of interatomic distances, { r ~  } where v and/x refer to the individual 

atoms. If the system is macroscopically isotropic, as in liquids, the distribution of the 

interatomic distances is given by 

1 
p(r) -- pog(r) - 47rNr2 y .  Z 6 ( r -  rv~ ), (1.1) 

where P0 is the number density of atoms in the system of N atoms. The 6 is a Dirac delta 

function. The function p(r) is called the atomic pair density function (PDF). The function 

g(r) is called the atomic pair distribution function, also abbreviated as PDF. The PDF is a 

one-dimensional function which has peaks at distances, r~, = I r ~ -  r~l, separating the 

uth and/xth atoms. The sums are taken over all the atoms in the sample. What results is a 

histogram of all the a tom-atom distances in the solid. In practice, there are so many atoms 

in the material that p (r) becomes a quasicontinous distribution function. An example of a 

PDF for an amorphous metallic alloy is shown in Figure 1.1. Note that p ( r ) =  pog(r) is 

practically zero below a certain value of r, since two atoms cannot come too close to each 

other. There is a large peak at the average atomic separation, usually 2 - 3  A, representing 

the nearest neighbors, and there are some oscillations beyond the first peak due to short- 

range order. 

In this example of a material with no long-range order p(r) asymptotes to the value of P0 

at high r (note that g(r) asymptotes to 1). At low-r p(r) oscillates up and down above and 

below the average density. These oscillations contain the useful local structural infor- 

mation. Because we are measuring deviations from the average density, these oscillations 

are referred to as 'correlations' and p(r) and g(r) are often called 'pair correlation 

functions'. They give information about correlations (deviations from average behavior) of 

pairs of atoms. 

From these functions one can learn various pieces of information regarding the local 

environment of atoms, such as how many neighbors there are and how far away they are. 

While the PDF provides only one-dimensional information, it is possible to recreate 



Structure o f  Complex Materials 9 

1 0.25 

0.20 -i 

�9 Pd4oNi4oP20 

o ,L ~ 0.15 
v 

0.10 

0.05 

0.00 

2 4 6 8 
r[A] 

Figure 1.1. The atomic pair density function, p(r)= pog(r), from the amorphous metallic alloy Pd4oNi4oP20 
showing the generic behavior of g(r) for an amorphous material. The data asymptote to zero at low-r and to 
/90 -- 0.07 ,~-3 at high-r equivalent to g(r) = 1. In between the PDF oscillates showing atomic correlations 

(deviations from the average density), for example a greater probability of finding an atom at the hard-sphere 
separation distance of 2.9 A, followed by a less than average probability of finding a neighbor between 

the first and second neighbor shell at 3.5 A, and so on (Egami et al., 1998). 

the three-dimensional structure with a relatively high degree of confidence by creating a 

three-dimensional model whose PDF agrees with the experimental PDF (Chapter 6). In 

principle, the approximation of an isotropic sample can be removed and the extension of 

the equations to define three-dimensional distribution functions is treated in Chapter 3. 

The PDF can be experimentally determined by diffraction measurements using X-rays, 

neutrons, or electrons, as discussed in Chapter 4, or by the method of X-ray absorption fine 

structure (XAFS). The XAFS method is not the focus of this book; however, for 

completeness a discussion of this technique, and its relationship to diffraction techniques, 

is given in Appendix 3.4. These methods of structural study are applicable for any system, 

amorphous or crystalline, isotropic or anisotropic, powder or single crystal. In this book we 

mainly deal with the PDF determined by powder diffraction. Powder diffraction 

experiments are the simplest measurements,  and in many cases provide enough relevant 

information to understand the phenomena of interest. 

While the PDF method is an established technique in the field of structural study of 

glasses and liquids until recently it has hardly been used for the study of crystalline solids. 

There are two reasons for this lack of activity. The primary reason is that technology was 

not ready. If one uses X-rays from the regular sealed X-ray tube in the laboratory or 

thermal neutrons from a nuclear reactor as radiation, the wavelength of the radiation is 

too long for the PDF to be determined accurately, as we discuss later. The advent of 
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synchrotron based radiation sources, such as pulsed spallation neutron sources and X-ray 

synchrotron sources, that provide high-intensity short-wavelength particles has made the 

PDF method accurate and reliable. The secondary reason is that with these techniques data 

analysis and modeling is highly computationally intensive and has only become practical 

with the recent advent of high-speed computing. Finally, as we mentioned above the need 

for studying the detailed atomic structure of complex materials is relatively new, instigated 

by the discovery of such materials. 

Many of the subjects discussed in this book are dealt with in a number of standard 

textbooks listed in the bibliography. However,  due to advances in facilities, equipment, 

experimental techniques and modeling, it is worthwhile to cast a new light on the subjects. 

In particular the application of the PDF method for the structural study of crystalline solids 

is outside the scope of these classical books, while that is the main focus of the present 

book, with recent results being used as examples of application. 

1.1.5 Real and reciprocal space 
Diffraction methods measure diffracted intensity as a function of the momentum transfer of 

the scattering particle, Q, which is defined as Q - -  k i n i t  - k f i n a l  , where k i n i t  and k f i n a l  a r e  

the incident and scattered wavevectors, respectively. For this reason Q is also called the 

diffraction vector. The data naturally appear in the so-called reciprocal space as intensity as 

a function of wavevector. Clearly, from the definition of p(r) this function is a direct 

representation of the real structure and exists in real space as a function of position. These 

two domains are linked by a Fourier transform, as we discuss in detail later. However, it 

becomes immediately apparent that the same information about the local structure can be 

equally well represented in either real- or reciprocal-space. The reciprocal space 

equivalent of p(r) is S(Q) the total scattering structure funct ion.  1 The name 'total 

scattering' comes from the fact that included in the intensity is scattering coming from 

Bragg peaks (the global structure), elastic diffuse scattering (the static local structure) and 

also inelastic scattering from moving atoms that contains information about atom 

dynamics. Since these intensities are not resolved and differentiated, the resultant 

scattering intensity is referred to as total scattering. The study of local structure described 

in this book generically comes down to the study of the total scattering intensity, S(Q). This 

can be studied directly in reciprocal space or by Fourier transforming to real space and 

studying the PDF. Both approaches are valid and tend to provide complementary 

information. Examples of both approaches are described in this book, though the emphasis 

is on the study of the PDF since this is the particular expertise of the authors. 

J S(Q) is widely referred to as the structure factor in the world of non-crystalline materials. This is an 
unfortunate misnomer and causes confusion when these ideas are introduced to crystallographers who have their 
own, quite distinct and appropriately named, crystallographic structure factor, Fhkl. We prefer to call S(Q) the total 
scattering structure function since it is a continuous function of intensity vs. Q and not a factor that scales a Bragg 
peak amplitude as in the case of Fh~l. 
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1.2. THE POWER OF TOTAL SCATTERING AND PDF METHODS 

Before we submerge ourselves into the details of the diffraction physics and the PDF 

method, let us quickly review some examples that illustrate the power of the PDF and total 

scattering methods. Details regarding each example will be expanded upon later in the 

book. However, these brief descriptions should help the reader to have some concrete 

images of what we are talking about, and also will hopefully motivate the reader to read 

further. 

1.2.1 The difference between the local and average structures: alloys 

What exactly is meant by the difference between the local structure and the average 

crystallographic structure? A simple example is found in the case of an alloy semiconductor. 

Semiconductors GaAs and InAs have the same structure but different band gaps; the band 

gap can be engineered by alloying them to form a pseudo-binary compound (Gal-xInx)As. 

The lattice constant changes approximately linearly with x, following Vegard's law. 

Crystallographically then, the distance between the (Ga,In) site and the As site changes 

linearly with x. This, however, does not mean that actual bond length changes linearly with 

x. We know that a large energy is needed to change the bond length, and it is most likely that 

the G a - A s  distances and the In -As  distances endeavor to remain more or less constant even 

when x is changed. In this covalent solid the structural disorder due to the alloying is 

predominantly relaxed by bond bending that requires relatively less energy. 

The crystallographic (Ga,In)-As distance represents only the average distance between 

the atoms at the (Ga,In) and As sites, and corresponds to neither the actual G a - A s  nor I n -As  

distances. When x is changed the number of G a - A s  and In -As  bonds changes linearly with 

x, resulting in the linear change in the average lattice constant. Crystallography gives you 

only the average bond distance and the lattice constant, and does not tell you the actual local 
bond length. In order to determine the local bond one requires local probes. 

Indeed the PDF determined by high-energy X-ray diffraction clearly shows that the 

nearest neighbor (Ga,In)-As peak at --~ 2.4 A is split into two sub-peaks, as shown in 

Figure 1.2 (Petkov et al., 1999). The dependence of the positions of the sub-peaks 

on composition x is shown in Figure 1.3. The sub-peak positions connect smoothly to 

the G a - A s  and In -As  distances in the pure compounds, revealing the chemical identity of 

these peaks. 2 A weak dependence of the peak position on x means that the size-mismatch 

leads to a small amount of local atomic-level strain (Eshelby, 1956; Egami and Aur, 1987). 

1.2.2 Short- vs. long-range correlations: molecular solids 
Another example that illustrates the notion of local vs. global structure is a molecular solid, 

for instance a crystal of C60, or buckyballs (Figure 1.4(a)). Buckyballs form an f.c.c. 

2 This behavior was first seen in another local technique, XAFS (Mikkelson and Boyce, 1982); however, the 
PDF study reveals the intermediate range order and gives a more complete structural solution. 
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Figure 1.2. PDFs in the form G(r) = 4"rrr(p(r) - P0) from Inl-xGaxAs alloys. Data were measured from high- 

energy X-ray diffraction data at Cornell High Energy Synchrotron Source (CHESS) at 10 K. 
Notice the first peak is split indicating the presence of short G a - A s  and a long In -As  bonds 

(Petkov et al., 1999; Jeong et al., 2001). 

solid (Figure 1.4(b)). At and above room temperature each molecule is randomly rotating. 

Thus the time-averaged structure is just an f.c.c, structure of uniform hollow balls with 

the diameter of about 7 .~. However, within each buckyball the network of carbon atoms is 

rigid. Translated into the language of the PDF, this means that the carbon atoms within the 

same buckyball are highly correlated, but those on different buckyballs are not correlated. 

Thus, as shown in Figure 1.4(d), the PDF exhibits sharp features up to 7 .~ which is 

the diameter of the buckyball, reflecting the discrete interatomic distances within the 

molecule, while it becomes a slowly varying function beyond, without atomic details. 

The broad peaks in the PDF beyond 7 ,~, are real and come from the f.c.c, arrangement 

of isotropic spherical balls. The nearest-neighbor bal l -bal l  separation, a, is --~ 10 ,~ 

corresponding to the first broad peak. The second and third neighbors are at ,v/2a and v/3a, 

i.e. --~ 14 and --~ 17 A, as observed. 

This shows that, within the same PDF different information about the local structure 

(intra- and inter-domain correlations) is contained at different values of r. It also shows 

that even when rigid local objects are rotationally (and translationally) disordered the 

PDF still yields the intra-object structure, information that is lost in a crystallographic 

measurement in such a case. 
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Figure 1.3. The dependence of the lengths of the short- and long-bonds in Inl-xGaxAs alloys as a function 
of doping. The inset shows a close-up of the PDF of the near-neighbor In/Ga-As bonds for various 

compositions with model predictions superimposed (Petkov et al., 1999). 

1.2.3 Relevance to the properties I: high-temperature superconductors 
High-temperature superconductivity in copper oxides is one of the most remarkable 

phenomena in condensed matter physics. Not only is the critical temperature surprisingly 

high, but the mechanism appears to be fundamentally different from that of the 

conventional 'low-temperature' superconductors, such as Hg or Nb. For the low- 

temperature superconductors the Bardeen-Cooper-Schrieffer (BCS) theory (Bardeen 

et al., 1957) works beautifully, but the critical temperatures of cuprate superconductors are 

too high to be accounted for by the BCS theory. The mechanism of high-temperature 

superconductivity apparently is deeply rooted in quantum-mechanical many-body 

phenomena involving spins and local coulomb repulsion between electrons. 

Since the BCS theory was set aside early on, phonons, which form the basis for the BCS 

mechanism, have been all but completely ignored by most theoreticians. However, the 

lattice shows very anomalous behavior near the superconductive transition temperature 

(Egami and Billinge, 1994, 1996). An example is shown in Figure 1.5. Here the 

temperature dependence of the height of the PDF peak at 3.4 .A,, determined by pulsed 

neutron scattering, is plotted for TlzBazCaCuzOs (Toby et al., 1990). This peak describes 

the oxygen-oxygen distance adjacent to Cu, and the peak height is expected to become 
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Figure 1.4. (a) The structure of a single C6o molecule. (b) The f.c.c arrangement of C6o balls 
in solid C6o. (c) Room temperature neutron powder diffraction data from a sample of solid C60 at room 

temperature. Note the pronounced diffuse scattering. The Bragg peaks from the f.c.c, arrangement of the balls 
are evident at very low Q. (d) Fourier transform of the data in (c) showing the PDF, G(r), of solid C60. 

o 

The sharp features at low-r are the intra-ball C - C  correlations. Above 7.1 A only inter-ball correlations are 
present which are very weak because the balls are spinning. 

reduced with increasing temperature because of lattice vibration, as shown by a solid line 

that was calculated from the phonon density of states measured by neutron inelastic 

scattering. The measured peak height deviates strongly from the prediction, and peaks 

around the superconductive transition temperature, Tc. Clearly the local structure does 

reflect the superconducting phase transition. It may even be intimately involved in the 

phenomenon of high-temperature superconductivity. 

Another example is the PDF peak width of Laz-xSrxCuO4. In this system as the value ofx 

is increased holes are doped into the system, driving the system to superconduct in the range 

0.06 < x < 0.22. The width of the first peak of the PDF, coming from C u - O  nearest 

neighbor distances, first increases and then decreases as x is changed through the 

superconducting composition range, as shown in Figure 1.6 (Bozin et al., 2000). The PDF in 

this range is a superposition of the PDF at x = 0 (insulating) and that at x = 0.25 (metallic), 

indicating that the system is microscopically phase-separated into regions rich and poor in 

doped charge. This is supported by the observation that the intermediate range of the PDF of 

the x = 0.1 sampl e is well described by a mixture of the x = 0 (undoped) and x = 0.2 

(heavily doped) PDFS (Figure 1.7; Bozin et al., 1999). Such microscopic phase separation 
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An anomaly from the expected Debye-behavior is observed at around T -  110 K close to the 

superconducting transition temperature, Tc (Toby et al., 1990). 
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Figure 1.6. Width of the PDF peak at r --~ 1.90 A vs. doping for the material La2-xSrxCuO4. The peak broadens 
with increasing doping until x -- 0.15 whereupon it abruptly sharpens again. The broadening is 

thought to be due to electronic inhomogeneities in the materials in the form 
of dynamic charge stripes in the low-doped region. These inhomogeneities 

disappear at high doping (Bozin et al., 2000). 
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F i g u r e  1.7. Direct evidence in the PDF for charge inhomogeneit ies  in the La2_xSrxCuO 4 system. The PDF of 

the x = 0.1 sample (open symbols in (a)) is well reproduced by a 1:1 mixture of the PDFs from undoped 

(x = 0.0) and heavily doped (x -- 0.25) samples. The PDFs from each of these two samples are shown in 

(b) and the 1:1 linear combinat ion is shown as a solid line in (a). Note the good agreement as evident by 

a weakly fluctuating difference curve as shown below the data in (a) (Bozin et al., 1999). 

was observed in the stripe phase in (Lal.475Nd0.4)Sr0.125CuO4, where the metallic stripes 
with the width of about a unit cell are formed in the insulating matrix, with the periodicity of 

four unit cells (Tranquada et al., 1995). While (Lal.475Nd0.4)Sr0.125CuO 4 is not 
superconducting, and the stripes are static, it is suspected that similar micro-phase 

separation, but a dynamic one, may exists even in the superconducting compositions. Since 
the C u - O  distance in the insulating phase is larger than that in the metallic phase, the first 
peak due to the C u - O  distance becomes wide in the mixed phase. The change in the peak 
width with x, and its relationship to the x-dependence of Tc, indicates that the phase 
separation may be required for superconductivity to take place. 

1.2.4 Relevance to the properties H: CMR manganites 
The CMR phenomenon is related to a magnetic field-induced insulator-to-metal transition. 
It turns out that hole localization due to polaron formation is an important component and 
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the PDF method played a major role in elucidating this mechanism. The key to the problem 

is the coupling of electrons to the lattice via a Jahn-Teller (JT) distortion (Goodenough 
et al., 1961): locally, MnO6 octahedra elongate to break an electronic degeneracy. In the 

Lal-xSrxMnO3 system, the undoped, insulating compound, LaMnO3, is JT distorted. This 
is clearly seen in the local structure (Figure 1.8) (Proffen et al., 1999) as the first M n - O  
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Figure 1.8. PDF of LaMnO3 from neutron powder diffraction data collected at 10 K on the SEPD instrument 
at IPNS (dots). Note the first (negative) peak around r - - 2  A coming from M n - O  pairs is split into 
a well-resolved doublet showing the existence of short and long M n - O  bonds�9 This directly shows 
the Jahn-Teller distorted MnO6 octahedra and is shown on an expanded scale in the lower panel. 

The solid line is the PDF calculated from a refined model of the structure using PDFFIT. 
The difference curve is shown below (Proffen et al., 1999)�9 



18 Underneath the Bragg Peaks 

u. 
a 
0. 

0.6 
T = N e a r  R T  . 8 % 

1 5 %  
0 . 4 -  

0,2 

0.0 

-0.2 

I 4 

2.0 2.5 3.0 3.5 4.0 4,5 

,[AI 
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around 2.15 A in the PDF despite the fact that the crystal structure indicates that the Jahn-Teller 
distortion has disappeared on average (Louca and Egami, 1997). 

peak in the PDF at r --- 2.0 A being split into two components. 3 Because the JT distorted 

octahedra have long-range orientational order the 'distortions' are also seen in the average 

structure. The crystal structure indicates that the JT distortion is quickly reduced as the 

valence of Mn is increased from 3 + towards 4 + by replacing La 3+ with Sr 2§ By the 

time the MI transition occurs at x - - 0 . 1 6  the JT distortion in the global structure is 

completely gone. However,  it is still evident in the local structure since long M n - O  bonds 

are evident in the PDF (Figure 1.9) (Louca and Egami, 1997). The distortion disappears in 

the average structure because the distorted octahedra become orientationally disordered 

with the long axes lying along x, y and z directions with equal probability. The importance 

of this electron lattice interaction to the CMR phenomenon itself was also demonstrated 

from a PDF measurement. An anomalous broadening at the MI transition of the PDF peaks 

associated with the M n - O 6  octahedra was interpreted as electron localization and polaron 

formation (Figure 1.10) with the appearance locally of Jahn-Te l le r  lattice distortions 

(Billinge et al., 1996). 

1.2.5 Dynamical disorder and symmetry lowering in silica 
Silica (Si02) is the basis of window glass. It also comes in crystalline forms, the best 

known being quartz. The silicon atoms are tetrahedrally coordinated with oxygen. Since 

each oxygen has two silicon neighbors this forms into a continuous tetrahedral network. At 

low temperature silica forms the so-called c~-quartz phase; on heating this transforms into 

3 It appears as a negative peak because of the negative neutron scattering length of Mn. The reason why will be 
clear after studying the detailed definition of the PDF in Chapter 3. 
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F i g u r e  1.10. PDF peak height vs. temperature of the PDF peak at r = 2.75 ~, in Lal-xCaxMnO3. The solid lines 
show the expected decrease in peak height from increasing PDF peak-width due to enhanced thermal motion 

at higher temperature. In the two samples which have a MI transition (indicated by an arrow) there is 
an anomalous drop off in peak height indicating additional non-thermal disorder which is coming from 

polaron formation at high temperature. This PDF evidence was some of the most compelling supporting 
the view that polaron formation and electron-lattice interactions were important for understanding 

these CMR materials (Billinge et  al., 1996). 

[3-quartz, then HP-tridymite, then [3-cristobalite before melting at 1727~ These are all 
phases with slightly different crystal structures. If cooled quickly or under pressure yet 
more phases appear including, on fast cooling, the glass phase. These phase transitions 
have recently been studied using total scattering techniques which revealed unique 
information (Tucker et al., 2000a,b; Keen and Dove, 1999; Keen, 1998). These studies 
show that that the old ideas of displacive vs. order-disorder transitions do not capture the 
whole truth of what is happening, at least in the transitions in these materials. This became 
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clear by studying the average structure and the local structure at the same time using total 

scattering methods. For example, in the phase transition in quartz at T = 846 K the S i - O  

bond length changes smoothly from 1.61 A at low temperature to 1.586 A above the 

transition. These bond lengths were obtained from the average structure using Rietveld 

refinement of neutron powder diffraction data. However, PDFs obtained from these same 

data showed that, over the same temperature range, the local S i - O  bond evolved from 

1.61 .& at low temperature to 1.62 A at 1000 K. This modest increase in bond length was a 

result of the natural thermal expansion of the SiO4 octahedra and in sharp contrast to 

the behavior of the average bond length. This is shown in Figure 1.11 that shows the S i - O  

bond length obtained from the PDF and from Rietveld on the same plot (Tucker et al., 

2000a,b). Both results were obtained from the same sample and, indeed, from the same sets 

Figure 1.11. Si-O bond length in a-quartz vs. temperature determined from the average structure and from the 
PDF. The actual bond length increases modestly due to thermal expansion up to 1000 K as seen from the 
PDF measurement (O). The anomalous shortening of the Si-O bond evident in the average structure (11) 

comes about because of thermally induced rotations of the Si-O4 tetrahedra about the Si-Si 
axis as shown in the lower part of the figure (Tucker et al., 2000a, 2002). 
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of data. The reason for this observation is that, in the high temperature phase, the tetrahedra 

are dynamically rotating in such a way that the oxygen atom between the tetrahedra can 

rotate about the average bond axis. Consequently the S i - O - S i  bond in the average 

structure is straight and the S i - O  bond is therefore given by half the S i -S i  distance. In 

reality the local bond angle for the S i - O - S i  bond remains closer to 150 ~ and the oxygen 

atom rotates around the average bond. This is illustrated in the bottom of Figure 1.11 

(Tucker et al., 2000a). 

1.3. RESOURCES FOR LEARNING TOTAL SCATTERING AND PDF METHODS 

A number of resources are available to help people get started using PDF and total 

scattering methods beyond reading references cited in this book. A web-page has been 

developed which contains useful programs, tutorials and links related to total scattering 

and PDF measurements as well as examples of scientific studies and recent papers that 

have been published. The web-page is at www.totalscattering.org. Useful programs can be 

downloaded from this website such as data analysis and modeling software described in 

this book. This software mostly comes with extensive documentation including tutorial 

examples to give new users experience in carrying out analyses. There are also online 

tutorials present on this web-page to help learn basic diffraction theory and to help 

understand the origin of diffuse scattering (Proffen et al., 2001). Finally, from time-to-time 

PDF and total scattering workshops will be organized, for example, at major national 

meetings such as the annual meeting of the American Crystallographic Association. By 

registering your name and contact address at the www.totalscattering.org web-page you 

can be added to the total scattering mailing list where news about software developments, 

workshops and other relating to total scattering will be posted. 
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Chapter 2 
Crystallographic Analysis of Complex Materials 

2.1. THEORETICAL BACKGROUND 

2.1.1 Scattering intensity 
In diffraction experiments, one directs a beam or ray of particles at the sample 

(Figure 2.1), and measures the intensity of the scattered beam as a function of scattering 

angle, 20, and the wavelength of the probe. The procedures to carry out such 

measurements are discussed in Chapter 4. The task of the researcher is to analyze the 

intensity data and relate them to the structure or dynamics of the sample. The analysis is 

usually made in two stages. The first stage is to correct the observed intensity for 

secondary effects such as absorption and background, etc., to obtain a normalized 

intensity that can be theoretically analyzed. The second is to explain and numerically 

reproduce the normalized intensity using a structural model. These steps are discussed in 

Chapters 5 and 6. Before these subjects are introduced we will first present the theoretical 

basis in this chapter, and introduce the PDF method in the next chapter. From this chapter 

to Chapter 7 pages are crowded with equations that are sometimes long, but the meaning 

of each equation is relatively simple. They are all included in the software used in the 

analysis that can be downloaded to your computer. 

X-rays and neutrons interact relatively weakly with atoms, which makes the 

measurement hard, since the scattered intensity is weak, but at the same time makes the 

data analysis easy. This should be contrasted to the case of electrons that interact with 

atoms more strongly, which makes the measurement easier but analysis harder. For this 

reason we focus on X-rays and neutrons in this book. Extension to electron scattering is 

kinit > 

sample 

kfinal 
kinit 

-kfinal 

Figure 2.1. Geometry of the powder diffraction measurement and definition of the scattering vector, Q. 
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straightforward in most respects, but needs additional considerations at times. The readers 
should consult other books (e.g. see the bibliography at the end of this chapter) for this 
purpose. 

The actual total intensity of the scattered X-ray or neutron beam, IT, is composed of 
several parts, 

IT = Ic + Iic + IMC + IBC (2.1) 

where Ic is the coherent scattering intensity, hc the incoherent scattering intensity, IMC the 
multiple-scattering intensity, and IBC the background intensity. The scattering intensity IT 
is measured as a function of the scattering angle, 20, and the wavelength of the probe, A. 
For elastic scattering the diffraction vector, Q, defined in Section 1.1.5 and Figure 2.1, has 
a magnitude 

4"rr sin 0 
IQI = (2.2) 

A 

where A is the wavelength of the scattered particle and 0 = 20/2 where 20 is the angle 
between the incident and diffracted beams. In the case of powder measurements the only 
relevant quantity is the magnitude of the diffraction vector, Q = IQI. We note that since 
sin 0 <- 1, the experimentally accessible range for Q is limited to less than 47r/A. For 
instance Cu K,~ radiation, which is most widely used in laboratory X-ray facilities, has a 
wavelength of 1.54/k. This means the range of Q is limited to about 8 A-l ,  while for most 
of the applications discussed in this book the Q range of ---30 A-1 is required. This is an 
important point that will be discussed in Chapter 3. 

Incoherent scattering arises from Compton scattering in the case of X-rays and nuclear 
spin scattering in the case of neutrons. Multiple-scattering occurs mainly within the 
sample, but double scattering involving the sample and the environment can be significant. 
The background intensity here includes scattering without the sample, due to the sample 
holder, air, optical systems, etc. This is different from the so-called 'background' in 
crystallographic analysis, the intensity in-between the Bragg peaks, which includes diffuse 
scattering from the sample. In crystallographic analysis the 'background' is curve-fitted 
and discarded. But as we will see the diffuse scattering intensity contains a wealth of 
information about local structure, and in this context discarding the diffuse scattering 
amounts to throwing the baby out with the bathwater. The title of this book, Underneath 
the Bragg Peaks, implies the importance of the diffuse scattering intensity, which is 
usually overlooked in standard crystallographic analysis. Note that in the PDF method the 
true background intensity has to be independently measured, by carrying out a scattering 
measurement without a sample. 

The information on structure and lattice dynamics is contained in the coherent 
scattering cross-section, do-c/dO. Here dO is the solid angle that the detector subtends with 
the origin where the sample is located. The formalism of 'scattering cross-sections' is 



Crystallographic Analysis of Complex Materials 27 

introduced and defined more formally in Appendices 2.1 and 5.1.1 The experimentally 
measured intensity of coherent scatting, Ic, is related to do-c/dO, but is modified by 
absorption and polarization factors; 

do- C 
Ic = A P C ~  (2.3) 

dO 

The absorption factor, A, depends on the geometry of the sample and the nature of the 
scattering particle. More detailed discussions on this factor are given in Chapter 5. The 
electric polarization factor for X-rays and spin polarization factor for neutrons are well 
known, and will not be repeated here (e.g. see Warren (1990) and Bacon (1975), 
respectively). C is the normalization factor needed to express do-c/dO in the appropriate 
units of intensity per atom. In the following we focus on do-c/dO, and discuss how to obtain 
the structural information from this quantity. 

2.1.2 Sample scattering amplitude 
For the most part of this book, we need a surprisingly small amount of basic theoretical 
background. The only equation that truly needs to be understood is that for the sample 
scattering amplitude, 

1 X eiQR ~ q t ( Q ) -  ~ by (2.4) 

where Q is the diffraction vector or the momentum transfer, and is defined by 2 

Q = kinit - kfina 1 (2.5) 

where kinit([kinit[-- 2'n'/Ainit ) is the wavevector of the incoming beam and kfinal(]kfina 1 ] ---- 
2'n'/,~final ) is the wavevector of the scattered beam (Figure 2.1). For elastic scattering 
/~init - '~,final, thus the magnitude of Q is given by Eq. 2.2, 

4"rr sin 0 
Q = IQI--- 2k sin 0--- (2.6) 

A 

where k = ]kinit I --]kfina 11. 
In Eq. 2.4, R~ defines the position of the vth atom, by is the scattering amplitude of the 

atom v, i.e. a measure of how strongly it scatters, and (..-) represents a compositional 

1 The concept of the scattering cross-section is a very useful one which relates a sample dependent property (the 
probability of a particular scattering event occurring) to a real experimental value (the number of detected counts 
in a detector). For those readers unfamiliar with it, we recommend spending a short time to understand and get 
comfortable with the basic ideas (see Section A5.1.1 in Appendix 5.1 as well as standard textbooks). Do not be put 
off by the mathematical looking nature of the expressions, an unfortunate legacy of its origin in theoretical 
physics. The ideas behind the scattering cross-section are highly intuitive and physical. 

e Note that in some textbooks Q is defined as Q = kf ina  1 - k i n i t  , i.e. with the opposite sign as used here. 
This is fine, though in that case Eq. 2.4 becomes ~(Q)  = (1/(b)) Y',,b~ e -iQR~ and Eq. 2.12 becomes Q --- - K .  
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average, 

1 
(b) = -~ Z by -- ~.  c,~b~ (2.7) 

Here the sum over v is over every atom in the sample. In practice, this is more conveniently 
expressed as a sum, a, over atomic species where c,~ is the atomic fraction and b~ is the 
scattering amplitude of the element c~, as indicated in Eq. 2.7. 

For X-rays, by depends fairly strongly on Q and is usually denoted as f(Q), but for 
neutrons by is independent of Q. This difference reflects the quite different spatial spread of 

the scatterer, electron density for X-rays and nucleus for neutrons. In solids atoms are not 
static, but are vibrating due to atomic vibration. Consequently R~ changes with time, and 
~(Q) really is a function of time, 

1 qffQ, t) = ~ '~v b~ e iQR~(t) (2.8) 

However, in the following we suppress the variable t, unless noted, for the sake of 
simplicity. The time-dependent structure factor will be discussed in the next section when 
we introduce the Debye-Waller approximation, and in Chapter 7 in relation to inelastic 
scattering. 

The derivation of Eq. 2.4 is given in Appendix 2.2 in two different ways, one 
intuitive and the other more formal. In deriving this result, only single scattering of the 

incident beam with the atoms was considered and coherent multiple-scattering was 
neglected. This simplification is known as the kinematic approximation, and is accurate 
only when the scattering is weak and the structural coherence is not too large as in 

powders. In highly perfect large crystals, coherent multiple-scattering often is as 
important as single scattering, and they together can create dramatic effects such as 
anomalous transmission. In such a case the diffraction phenomena can be described 

accurately only by the dynamical scattering theory. In this book we do not enter this 
subject, since we are concerned with imperfect crystals that do not require dynamical 
theories. 

In general, the Fourier transform of a function fix) is given by F(Q) = ~.3~ 
e ikxj. Upon inspection of Eq. 2.4 it is evident that qt(Q) is just the Fourier transform of 

the atomic position, Ry. The structural information is contained in the phase of the 
exponential factor. Thus, if we know this scattering amplitude we can determine the 
atomic structure exactly, merely by taking the inverse Fourier transformation of gt(Q). 

Crystallography would be a trivial task if that were possible. However, as is well known 
we cannot directly measure the scattered amplitude qt(Q) but only the intensity of the 
diffracted beam, which is directly related to the square of the magnitude of gt(Q), 
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i.e. I~(Q)I 2. In detail, 

dtrc(Q) (b) 2 i ~(Q)I 2 1 
dO - N -- -N ~ bvb~ eiQ(R~-R~') 

~,,/x 

I(Q) = do'c(Q) (2.9) d ~  + (b)2 - (b2) 

I(Q) 
S(Q) = 

(b):  

where S(Q) is called the total scattering structure function, or often just structure 
function, which converges to unity at large Q. In the liquid and glass community S(Q), 
an intensity, is usually, and confusingly, called the structure factor, while in the 
crystallographic community the term structure factor scales the amplitude, ~(Q), (Eq. 
2.4). The crystallographic structure factor is defined in Eq. 2.15. Also, in the inelastic 
scattering community S(Q, to), discussed in Chapter 7, is called the dynamic structure 
factor. The conflicting naming in different communities has been a source of much 
confusion. In order to avoid such confusion in this book we use the term sample 
scattering amplitude to define qt(Q) and call S(Q) the structure function. The term 
(b) 2 -  (b 2) in the expression for S(Q) is called the Laue monotonic scattering, and is 
needed for convenience simply because do-r approaches {b 2) at large Q, while we 
want to make S(Q) approach unity at large Q. Actually it is possible to define S(Q) 
differently by normalizing with respect to (b 2) rather than {b) 2. In this case the Laue 
term is no longer necessary. 

Since the measured intensity is proportional to the square of the scattering amplitude, 
~(Q), the phase information of qffQ) is lost. All that survives is the phase difference 
between scattering events from different atoms. Specialized indirect methods of recovering 
the lost phase information exist that make use of dynamical diffraction from perfect single 
crystals, substitution of heavy atoms at known locations in molecules, and using 
anomalous diffraction, for example. These are extraordinarily powerful techniques that 
have revolutionized the structure determination of solids and small and large molecular 
structures. However, they are time consuming and difficult, and unwarranted or impossible 
in the structure determination of most inorganic materials. These techniques will not be 
discussed here (see, for example, Giacovazzo et al. (1992) or Woolfson (1997)). In the 
absence of this phase information, the structure must be reconstructed by creating a model 
structure and comparing the calculated scattering intensity from this structure with the 
measured structure function. That is why the structure determination is not a trivial task, 
and sometimes involves extensive analysis and modeling. 

For a perfectly periodic lattice (a crystal) the scattering amplitude becomes extremely 
simple because of the lattice sum formula. For a monotonic crystal in one-dimension, 
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R~ = va, where a is the lattice repeat distance, and we get 

lim (1 ) N---,~ -N ~--1 eiQva = 6(Q- na*) (2.10) 

where 6(z) denotes the Dirac delta-function, n is an integer and a* = 2"rr/a. Derivation of 

this equation is also given in the standard textbooks. Thus in three-dimensions the 

scattering occurs only at a discrete set of wavevectors, K, forming the reciprocal lattice, 

K = ha* + kb* + le* (2 .11 )  

where a*, b*, c* are the reciprocal lattice vectors. The Bragg condition for allowed 

scattering now restricts Q to being equal to K: 

Q = K (2.12) 

For more than one atom in the unit cell we can denote 

(R~)  - (R~,) = Rk + r .  - r m (2 .13 )  

where Rk specifies the separation between the unit cells, and r,, and rm are the position 

vectors of the nth and ruth atoms within the unit cell. Then, from Eqs. 2.9 and 2.13 we get 

dcrc(Q) = 6(Q - K) ~ b~bm e iQ~r"-r~) = 6(Q - K) ~ b, bm e iKh't(r"-rm) 
d~O nc n,m nc n,m 

I _ _ 6(Q - K) bn e iK~k'(r") (2.14) 
nc 

where the sum over n is now taken only over all the atoms in the unit cell, nc. The term 

Fhkt -- ~" bn e iKhkt(r') (2.15) 
//  

is the well-known crystallographic structure factor that gives the intensity of the Bragg peak 

located at Q = Khkt where h, k and I are the integers defining the particular reciprocal lattice 

vector in Eq. 2.11. Thus by determining K, or the position of the Bragg peak in the reciprocal 

space, the lattice constants and symmetry are directly known. The intensity of the Bragg 
peak, Eq. 2.14, translates to the atomic positions within the unit cell. An example of the 

structure function S(Q) for a crystalline powder sample (LaMnO3) is shown in Figure 3.1 (a). 

The enormous simplification in the problem that comes about when the sample is 

crystalline is evident by comparing Eqs. 2.9 and 2.14. In the former, general, case the sums 

run over all the atoms in the sample; in the latter, crystalline case, the double sum runs only 

over the atoms in the unit cell. It is this more complicated situation, when the structure is 

not perfectly periodic and Eq. 2.14 no longer strictly applies, that is the main subject of  this 

book. Furthermore, in the actual measurement the intensity is modified by absorption, 
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polarization and other factors. The total intensity of the scattered beam includes 
contributions from the multiple-scattering, inelastic scattering, and background due to 

sample holders and containers. These effects will be discussed in stages throughout this 
book. 

2.1.3 Debye- Waller approximation 
As has been repeated numerous times, the assumption of perfect periodicity is the center- 
piece for crystallography. However, a crystal structure is never perfectly periodic even when 

the crystal is perfect, because atoms are vibrating due either to thermal or zero-point 
quantum vibrations. The Debye-Wal ler  (DW) approximation was developed to incorporate 
the effect of lattice vibrations, and is an integral part of the crystallographic analysis. 

We will start with the time-dependent scattering amplitude, Eq. 2.8. Since the position 
of the atom, R, changes with time, it is convenient to describe it in terms of the deviation 
from the average position, R ( t ) =  u ( t ) +  ((R)), where u is the deviation and ((R}) is the 
time-averaged position of the atom. The subscript v is suppressed for simplicity. Eq. 2.8 
will now be, after averaging over time (denoted by ((...)}), 

((eiQR}) : ((eiQ(((R))+u))~ : eiQ((R))((eiQu)} 

[ ] 1 { ( Q u ) 2 ) )  + - ' .  
= e iQ((R~} 1 + i{{Qu}}  - 

Since {{Qu}} = Q{{u}} = 0 by definition, if u is small enough this approximates rather 
nicely to the expression for a Gaussian function, and we get, 

((eiQR)) ~ e iQ((R)) e - w -  e iQ((R)) e - �89176 (2 .17 )  

where e - w  is called the Debye-Waller  factor. It can also be shown (Warren, 1990) that if 
the probability distribution of u is Gaussian then this Debye-Wal ler  approximation is also 

exact even if u is not small. It is clear from this that the effect of lattice vibrations is not to 
broaden out the Bragg peaks. The Bragg peaks remain perfectly sharp but their intensity is 
diminished by the factor e x p ( -  �89 Q2(u2)) .  T h u s  if the vibrational amplitude of each atom is 
equal, the structure function becomes 

S(Q) - e-<<u2>}Q2So(Q) + 1 - e -(<u2))Q~ 

] {b)2 b~b~ e iQ(((R~))-((R~))) -- (b 2) n t- (b)  2 

We will discuss in Chapter 7 why the term [ 1 - exp(-((uZ))Q2)] was added in Eq. 2.18 (see 

Eq. 7.24). This term approximately describes the diffuse inelastic scattering intensity due 
to phonons. 
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It should be noted that the assumption in the approximation in Eq. 2.17 is that the 
distribution of u is described as a Gaussian distribution. Whenever this assumption is 
violated the DW approximation cannot be accurate. The structure function of the average 
lattice sites, So(Q), is composed of delta-functions that spreads over the entire Q-space. 
However, because of the Debye-Waller factor the intensity decreases with increasing Q, 
and the Bragg peaks practically disappear beyond certain values of Q. 

2.1.4 Diffuse scattering 
The Debye-Waller factor reduces the intensities of the Bragg scattering (Eq. 2.18) but 
where does the lost intensity go? It appears in between the Bragg peaks and becomes what 
is called diffuse scattering. The diffuse intensity is often hard to see and measure. It is 
widely spread over Q-space, compared to the Bragg peaks that are strongly confined at 
reciprocal lattice points in Q-space. However, a significant proportion of the total 
integrated intensity can reside in the diffuse scattering. Indeed, in the high-Q region where 
the Bragg peaks are small due to the Debye-Waller factor, the scattering is predominantly 
diffuse. 

In powder measurements, the diffuse scattering only weakly depends upon Q and forms 
a continuous background which is usually discarded in crystallographic analyses. 
However, the diffuse scattering provides important information regarding the local 
deviations from the average structure. The subtitle of this book, Underneath the Bragg 
Peaks, is meant to emphasize the importance of this diffuse scattering intensity which is 
usually not given the attention it deserves. 

In this section, we will explain how the diffuse scattering arises and what information it 
carries. This is a conventional treatment and a full understanding of it is not needed to 
understand the PDF. It is included for those readers who are comfortable with scattering 
equations and want an intuitive idea of how defects in crystals affect the measured 
scattering. One of the beneficial features of PDF analysis is that the structural information 
in the diffuse scattering appears in a direct and intuitive way, circumventing the need to 
grapple with the mathematics of diffuse scattering presented here. First time readers can 
skip directly to Section 2.2 without loss of continuity. Ultimately, it is very helpful to 
develop an understanding of the relationship between defects and diffuse scattering, from 
the equations presented here. It is also possible to develop an intuitive understanding of 
this relationship using the online diffraction tutorials at http://www.totalscattering.org. 
These allow the user to calculate the diffuse scattering patterns interactively from different 
arrangements of atoms and defects within simulated crystals. 

Here we consider the diffuse scattering in a crystalline material. The starting point is 
again the scattering amplitude, Eq. 2.4. We assume that the position of the vth atom, R~, 
deviates from the ideal crystallographic site, R~ by u~; 

R,, = R~ + u,, (2.19) 
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Thus the scattering amplitude is 

1 eiQR ~ 

lp 

1 
Y bv eiQR~ + iQu,, + - - . ]  

(b) (2.20) 

where we have made the same expansion as we did in Eq. 2.16. We can then consider the 
intensity contributions to ~(Q) term by term: 

~(Q) -- 1/)" I (Q)  + a/Z2(Q) + . . -  (2.21) 

where 

1 ~ eiQRO ' qtl(Q) = ~-~ by 
1 

~2(Q) = ~ ~ iQu,~b,, e iQR~ (2.22) 

and so on. The first term describes the Bragg scattering. If we apply volume averaging to 
the second term in the bracket of Eq. 2.20, just as in Eq. 2.16, it disappears because, by 
definition, ((u)) = 0. However, this kind of mean-field approximation as we discussed in 
Chapter 1 is a case of throwing the baby out with the bathwater. Actually if we examine Eq. 
2.22, we see that qt2(Q) is not zero when these deviations are locally correlated. This can 
be understood by applying the Fourier expansion to u~, 

u ~ ( R O )  - 1 �9 0 X/~ Z Uq e lqR~ (2.23) 
q 

Then the second term in Eq. 2.22 becomes 

i i 
a/re(Q) = ~-~ ~ bu eiQR~ -- x/~(b) Z bvQuq ei(Q-q)R~ (2.24) 

v,q 

Again the lattice sum (Eq. 2.10) results in 

ix/rN ~ g(K)(Quq)6(Q - q - K) (2.25) 
~2(Q) - (b) 

t /  

where g(K) = (l/N) Y'.n bn e iKR~ , wi th  n running over atoms in the unit cell. As before, K is 
the reciprocal lattice vector, Eq. 2.11. The intensity will be 

I(Q) : IBc(Q) + Io(Q) + " "  

ID(Q) = ( b ) 2 1 ~ 2 ( Q )  12 12 N --Ig(K)12 IQUQ-K 

(2.26) 

where IB6(Q) represents the Bragg diffraction intensity and ID(Q) the diffuse scattering 
intensity. The cross-terms between ~1 and ~2 vanish because of the two different 
t%functions involved. While the Bragg peak appears at the reciprocal lattice point where 
Q = K, diffuse scattering appears at Q -- K + q, at a point separated by q from the Bragg 
peak. If there is only one q value for which Uq is non-zero, we have a modulated structure 
with the wave vector q. If the deviations are local, a range of q vectors are needed to 
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describe the structure. For instance, if the deviation occurs only at one atomic site, or delta- 

function in real space, then its Fourier transform covers the entire Q-space. That is why the 

scattering from a local object results in broadly spread diffuse scattering. 

An example of diffuse scattering from a single crystal is shown in Figure 2.2. The most 

common diffuse scattering is due to thermal vibration of atoms, and is called thermal 
diffuse scattering (TDS). For a simple monatomic solid the amplitude of thermal vibration 
is given in terms of the phonon density, 

1 ( [ Q u q l 2 ) -  h ~-~ [QeJ(q)12{ nj(q)+ t (2.27) 

where M is the atomic mass, j = 1,2, 3 indexes the three modes with polarization vector 

~j(q), coj(q) is the frequency of the phonon and nj(q) is the phonon density, 

1 
nj(q) = ehOoi(q)/kT_ 1 (2.28) 

This result is described in greater detail in the books on lattice vibrations (see 

bibliography). This result is reintroduced in Chapter 7 that deals with inelastic scattering. 

Figure 2.2. Example of diffuse scattering calculated for the (hk0.5) plane of reciprocal space is shown for 
the case of an Ino.sGao.sAs alloy. Bright indicates strong intensity, dark weak intensity. Units are reciprocal lattice 

units (Jeong et al. 2001). 
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If the spectrometer has enough energy resolution to resolve phonon energy the equations 
developed in Chapter 7 describe the inelastic scattering intensity. On the other hand, in the 
usual powder diffraction experiment the diffractometer has no energy discrimination, so 
that Eqs. 2.27 and 2.28 are sufficient to describe the TDS. 

Let us examine the case when q is sufficiently small and T is large so that hoJj(q) << kT. 
In this limit we are considering the long wavelength sound waves propagating in the solid: 

oJj(q) = cjlql (2.29) 

In this case, 

([Quql2) ~ 2--M1 Z.  IQ~j(q)12 Q2 kT Q2 q2 c~ (2.30) 

Thus the TDS intensity is proportional to T. From Eq. 2.27 it is clear that when q is parallel 

to Q only the longitudinal mode (r is observed, while when q is perpendicular to Q 
only the transverse mode (r _L q) is observed. The TDS intensity in each case depends only 
on the sound velocity of each mode. Since the TDS intensity is proportional to q - 2  and 

diverges toward q = 0, it is strong only around the Bragg peak. The TDS pattern around 
each Bragg peak is similar, but its intensity increases with Q as Q 2. This is a common 

characteristic of displacive deviations. The local deviation may not take the form of local 
displacement, but atomic substitution, as in the case of alloying. In this case the diffuse 
intensity does not increase with increasing Q and is similar for all the Bragg peaks, if it is 
corrected for the atomic scattering factor and the Debye-Wal ler  factor. For a multi- 

component solid the expression of the phonon intensity becomes more complex. This is 

discussed in Chapter 7. 
Another important class of diffuse scattering is called Huang scattering (Huang, 1947; 

Borie, 1957, 1959, 1961), and originates from extended structural defects such as the strain 
fields around vacancies and dislocations. The strain field in a solid can also be Fourier 
transformed as in Eq. 2.23, and results in the diffuse scattering (Eq. 2.26). The screened 

strain field from a point source, 

yields the Fourier transform, 

- r / a  e 
Up(r )  - -  u 0 r2 ( 2 . 3 1 )  

Uo .~ Uo 
Up(q) -- iq -- ( l /a)  "" -iq (2.32) 

resulting in a q -2 power law for the intensity when substituted in Eq. 2.26, i.e. the diffuse 
intensity falls off as 1/q 2 from each Bragg position as with the TDS. Note that the strain 

field (Eq. 2.31) is not accurate when r is comparable to the atomic distance, at the core 

of the defect. Indeed it diverges at r -  0, while such divergence is unphysical. However, 
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the volume of the defect core is small, and its contribution to the Fourier transform is 
negligibly small. 

For general defects, most of the defect can be described as a distribution of point defects 
and the strain field due to the defect can be expanded in terms of Eq. 2.31 as 

v ( r -  r/)up(r/)dr / (2.33) u(r) I 

Its Fourier transform is the product of Eq. 2.32 and the form factor, which is the Fourier 
transform of v(r). 

u(q) : v(q)up(q) (2.34) 

If the defect is localized, the form factor v(q) does not depend too strongly on q, so that the 
total diffuse scattering follows the q - 2  law. Thus the Huang scattering has a similar q 
dependence as the TDS. They can be differentiated only by studying their temperature 
dependence, since the Huang scattering is usually independent of temperature. On the 
other hand, if the defect is spatially extended, the form factor itself may be described by a 
power law, v(q) --~ q-S. Then the total intensity will follow a q-~2+s) power law. In general, 
the diffuse scattering intensity follows some power law for small q, q-'~, and the power 
index a may be related to the effective dimensionality (fractal dimension) of the object 
(Sinha et al., 1991). 

2.2. CRYSTALLOGRAPHIC ANALYSIS 

2.2.1 Rietveld refinement method 
In the classical method of crystallographic data analysis each Bragg peak is isolated, a 
table of the position and integrated intensity for each peak is produced, and the fitting to the 
calculated position and intensity attempted. This is still the approach used in single crystal 
structure determinations, though the process is fully automated by computer. However, 
this approach severely limits the application of powder diffraction to solving crystal 
structures because as structures get more complicated, and as Q (or 20) increase, the Bragg 
peaks get closer together and begin to overlap each other. Structure determination (of 
unknown structures) from powder diffraction is growing in importance though is not 
preferred if single crystals are available. However, powder diffraction is very important in 
refining structural parameters from known structures. A prior guess at the structural model 
is made. Then the positions and relative intensities of the Bragg peaks are known. In the 
Rietveld method (Rietveld, 1969) the whole pattern of diffracted intensity, the diffraction 
profile, as a function of the diffraction angle 20 is calculated for the model. This includes 
modifications to the profile due to experimental effects such as the peak shape, absorption, 
polarization correction, the Debye-Waller factor, sample geometry, and the background. 
The calculated intensity profile, lcalc(Q), is compared to the data, and each parameter of 
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the model is refined to obtain the best-fit structural model. For this purpose the R-factor 

(R-factor derives from its name, the residuals function ) defined as the difference between 
the model and experiment, 

R : f [lmeas(a) - Icalc(a)]2dO 
f [imeas(Q)]2dQ (2.35) 

is minimized in a procedure of least square fitting. Ideally R should become zero, but 
because of various errors it remains non-zero. The residual value of R indicates the quality 

of the fit. Usually a R-value of a few % is considered to represent excellent fitting, while a 

value such as 10% represents rather poor fitting. Other R-factors can also be defined and 

are used. A common one is the weighted profile R-factor (Rwp) in which the statistical 
significance of each data-point is taken into account by weighting its contribution to the 
residuals function. It is defined as 

o-(O) [/meas(Q) -- Icalc(Q)]2dQ 
Rwp = (2.36) 

f Imeas (Q)2 dQ 
o~Q) 2 

where or(Q) is the estimated random error on each data-point at the level of one standard 
deviation. 

In all current standard Rietveld codes any diffuse scattering is dealt with somewhat 

arbitrarily. If it is widely spread in Q-space, it will be removed with the arbitrary 

background subtraction. If it is sharply peaked at Bragg peaks (for example TDS) it may be 
included in part as contributing to the Bragg intensity, or it may not be fitted and give rise to 

a larger R-value. In the high-Q region of the pattern, strongly overlapping Bragg peaks 

generally mean that even the diffuse scattering peaked at Bragg peaks may be removed by 

the background function. Recently, attempts have been made to extract explicit lattice 

dynamical information from the 'background' function by treating it as thermal diffuse 

scattering (Lawson et al., 2000). More of these kinds of developments can be expected in 
the future. 

When the Rietveld method was proposed it met with strong skepticism. However, it is 

more amenable to modem computers, and with the progress of computer technology it 
gained popularity. Its power was proven in many instances, including the early days of 

research on high-temperature superconductors. Whenever a new superconducting 

compound was discovered the Rietveld method was used to determine its structure. 

Today it is the standard method of data analysis in powder diffraction. It may be interesting 

to compare this history with the short history of the use of the PDF method for crystalline 
materials. It takes a long time for a new method to become developed enough, and widely 

enough used, to be trusted and accepted. For the method to be widely used the availability 
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of standard software is crucial. There are a wide variety of Rietveld programs available 
(for example, see the programs section of the International Union of Crystallographers 
(IUCr); web-page: http://www.iucr.org), some of the most commonly used are GSAS 
(Larson and Von Dreele, 2000), DBWS (Wiles and Young, 1981) and FULLPROF. 

2.2.2 Single crystal Fourier (Patterson) analysis 
In single crystal scattering studies, the Bragg peak intensities are sometimes Fourier 
transformed. This results in a periodic real-space pair-correlation function known as the 

crystallographic Patterson function, or just Patterson function (Patterson, 1934). Of more 
interest to us is to generalize this to the case where the atomic density is continuous, or not 
periodic. 

First we consider the relationship between the real-space atomic density and the 
scattering amplitude. Consider the case where the atomic density of the material under 
study is not described by a periodic distribution of delta functions but by the continuous 
density, p(r). In this case, Eq. 2.4 becomes 

a/ffQ)= 1 ~p(r)eiQrd r (2.37) 
poV 

where P0 is the average number density of the scatterers. The Fourier back-transform of 
ap(Q) will give p(r), the microscopic electron (X-ray or electron scattering) or nuclear 
(neutron scattering) density; a map of the structure. However, as we have described, we 

measure only the intensity and not the scattering amplitude directly. The scattering 
amplitude is proportional to the square root of the intensity, but the phase factor is 
unknown; 

~ ( a )  ec ei~ (2.38) 

What happens if we Fourier transform the measured intensity instead of ap(Q)? When 
properly normalized, the intensity yields the total scattering structure function, S(Q), 
which is the square of ~(Q). Thus, 

S(O) - I~(Q)I 2 - 1 _r,)d r (poV)2~~P(r)p(r')eiQ(r dr' (2.39) 

The Fourier transform of S(Q) is the density-density correlation function called the 
generalized Patterson function. Atomic distances are directly determined by this method, 
even before determining the whole structure. 

As we mentioned above, Patterson maps are often generated in crystallographic studies 
by Fourier transforming just the Bragg intensities. This results in a discrete sum rather than 
the continuous integral as shown here. Also the commonly encountered ones are Fourier 
difference maps where the difference between the measured and the calculated (from a 

model) Bragg peak intensities are Fourier transformed to search in real-space for 
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inadequacies in the model. The generalized Patterson function described above, where the 
scattered intensity is a continuous function of Q, is rarely encountered in practice, but is the 
basis for the PDF as we describe in more detail in Chapter 3. 

2.2.3 Reverse Monte-Carlo method 
Another method, which is gaining popularity as computer power is increased, is the reverse 
Monte-Carlo method (McGreevy and Pusztai, 1988; see Keen (1998), for a brief history of 
this method). The Monte-Carlo method is a general method of modeling which uses 
statistical principles. The name Monte-Carlo comes from this stochastic nature of the 
process (gambling!), and is widely used in various modeling applications. The idea is to 
start with some density function p(r) and improve it numerically until it can reproduce the 
observed diffraction intensity. The goal is to minimize the difference of Eq. 2.35 or 2.36 
using the Metropolis method (Metropolis et al., 1953). Let us assume that p(r) is described 
by a set of atomic positions, {r~}. We then move one of the atoms by a certain amount, At,,. 
This produces a change in the R-factor by AR. This move is randomly accepted or rejected 
with a probability, which is a certain function of AR. As the probability function, for 

instance, the Fermi-Dirac function could be used, 

1 
P = (2.40) 

1 + e aR/7~ 

where T is a fictitious temperature utilized to control the process of convergence. This 

process is repeated a very large number of times for each atom. The process is stopped 
when it can no longer improve the value of R. This process of minimizing the difference by 
numerical modeling is also called simulated annealing, for an obvious reason. The reverse 
Monte-Carlo method is frequently used in modeling the diffuse scattering intensity both 
from single crystals (Nield, 1998) and powders (Keen, 1998). This subject will be revisited 

in Chapter 6 in context of the PDF modeling. 

2.3. CRYSTALLOGRAPHIC METHODS AND DISORDER: LIMITATIONS OF 
CRYSTALLOGRAPHIC METHODS 

While crystallography assumes perfect periodicity, it is possible to include some 
deviations from periodicity into the analysis. Structural disorder is generally introduced 
through two parameters: 

(a) Enlarged Debye-Wal ler  factors. 
(b) Partial occupation of lattice sites. 

These two crystallographic 'band aids' can correctly characterize the extent of local 
disorder only in limited cases, and they can provide misleading information on the nature 
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of local disorder. It is worth considering how much disorder in a crystal can be usefully 

accounted for using these approximations and asking, 'What are the limits of 

crystallographic methods in dealing with disorder'? In this section we explore some of 

these limitations and show that the remedial methods for incorporating disorder, such as 

allowing for enlarged thermal factors, can underestimate and mischaracterize the disorder. 

This presents a motivation for applying total scattering and PDF methods more widely in 

the future in situations where it has not traditionally been done. Examples where 'solved' 
structures in the literature were shown to be wrong by applying PDF techniques are 

discussed in Chapters 9 and 10. 

2.3.1 Debye- Waller factor 
Atomic displacements due to phonons are well described by the Debye-Waller  factor that 

was derived for this purpose (Debye, 1913; Waller, 1923). This method is usually extended 

to describe other kinds of local disorder than lattice vibrations as well. We will first discuss 

how to evaluate the DW factor and find whether or not the factor is anomalously large. The 

DW factor is usually expressed as Eq. 2.18, 

e -Q2((u2)) = e -2Bs2 B --- 8"rl'2((u2)) (2.41) 

where s -- sin flA. Thus the DW factor is directly related to the r.m.s, amplitude of lattice 

vibration, ((u 2)). Within the Debye model it can be expressed in terms of the Debye 

temperature, 6~, as, 

( ,) if? ((U2)) = h ((n)) + ((n)) = 6)IT 
moJ -2 N e - 1 

where m is the atomic mass. If the phonon density of states, g(w), is known explicitly then 

((n)) can be evaluated explicitly as 

f o  g(o~) dw (2.43) <<n)) = e h~ 1 

The value of ((u 2))1/2 is usually less than 0.1 A at and below room temperature for all the 

elements. Any Debye-Waller  factor corresponding to a thermal amplitude greater than 

this is most likely due to the effect of disorder. 
It should be noted, however, that extending the DW approximation to describe disorder 

has serious limitations which are too often not sufficiently recognized. The DW 

approximation is inaccurate in the following cases: 

(i) Strong anharmonicity: If the local potential for an atom is a double-well the atomic 

distribution will be bimodal. However in the DW approximation this appears simply 

as a widely distributed atom density in a soft potential (Appendix 2.3). 
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(ii) Uneven distribution of mean-square displacement amplitudes on crystallographically 
equivalent sites: If a relatively small number of atoms have larger amplitudes of 

displacement while others remain normal, fitting one DW factor results in a 
significant underestimate of the displacements. The atoms with very large 
displacements are practically ignored. 

(iii) Correlated atomic displacements: If two atoms move in the same direction the change 
in the interatomic distance is smaller than the displacements of each, and the DW 
factor overestimates the relative displacements of atoms. On the other hand if the 
motions are anti-correlated, the DW factor underestimates the relative displacements. 

As an example let us consider a system in which 60% of the atoms have a root-mean- 
square displacement amplitude of u ] - - 0 . 0 5  A, while the rest of the atoms have an 

amplitude of u2 -- 0.2 A. The r.m.s, of displacement is then, 

((U2)) 1/2 = [0.6 x ( 0 . 0 5 )  2 --l- 0.4 X (0.2)2] 1/2 -- 0.132 (2.44) 

Now the total Debye-Waller  factor will be the weighted sum of the two DW envelopes, 

0.6 exp(-((u2))Q 2) + 0.4 e x p ( -  ((u2))Q 2) (2.45) 

If this is approximated by a single Debye-Wal ler  factor, as shown in Figure 2.3, the fitted 
value is 

( 2~ 1/2 
U 2]fit = 0 . 0 6 2  (2.46) 
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which is barely 1 of the true value. If we try to estimate the value of ((/'/2)) by knowing 

the value of ((u 1)), 

((U2))fit --- { [((U2))fit --  0.6 x ( 0 . 0 5 ) 2 ] / 0 . 4 }  1/2 = 0.076 (2.47) 

which is only about 1/3 of the correct value. 
This severe underestimate occurred because the Debye-Waller factor due to ((/'/2)) 

decreases quickly with Q, as shown in Figure 2.3, and contributes relatively little to 
the fitting. For that reason the DW factor depends upon the range of fitting, as shown in 
Figure 2.4. While the case above is a rather extreme case, this example demonstrates 
the grave danger in estimating the amplitude of displacement for minority atoms by the 
Debye-Waller approximation. It is often blindly assumed that even though the Debye- 
Waller approximation neglects atomic correlation at least the value of ((u 2)) determined by 
the Debye-Waller factor is correct. This example shows even this assumption should be 
treated with some caution. 

2.3.2 Values of refined parameters I: imperfect models 
As we discussed, because of the crystallographic phase problem structures can only be 
inferred, and not deduced, from experimental intensity data. This implies that the expected 
scattering from models must be compared to the observed intensities through a process of 
'fitting'. In any fitting procedure, the results are limited by the accuracy of the underlying 
model. Inadequacies in the model (for example, imperfect profile functions, imperfect 
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two-component Gaussian shown in Figure 2.3. The 'refined' value depends strongly on the range of fitting. 
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background subtraction, etc.) have to be accommodated in the fitting process by other 

degrees of freedom in the model. When this occurs, the refined values of these degrees of 

freedom are compromised, or biased in the language of regression. To make this concrete, 

let us consider an example. Let us assume that the sample has a finite absorption (as all 

samples do) but that this is not included (or is not correctly incorporated) in the structural 

refinement. If it is a symmetric fiat-plate transmission measurement the sample absorption 

increases with increasing diffraction angle as the path length of the rays through the sample 

increases. Thus, the measured intensity decreases with increasing angle. This appears 

similar to the effect of the Debye-Waller  factor. The fitting program can (and will) 

partially correct for this 'mistake' by decreasing the overall intensity scale factor and 

increasing the DW factor somewhat. Because the functional form of the intensity fall off is 

different from the DW form the correction is not perfect and there is a concomitant 

increase in the residuals function. Nonetheless, this illustrates how imperfections in the 

underlying model bias the refinement leading to unphysical values of certain parameters. 

2.3.3 Values of refined parameters II: correlated parameters 

The same example can also be used to illustrate how different parameters in the fit can 

become correlated. Correlated parameters are also prone to conspire with each other to 

yield biased, unphysical values. In the example used in the previous paragraph both the 

absorption correction and the DW factors give rise to rather slowly varying decreases in the 

Bragg peak intensities with increasing angle. The difference is in the exact functional form. 

For instance for a flat plate in the transmission mode the absorption correction to the 

intensity falls off as exp(-/~t/cos 0) where /~t is the absorption length of the sample 

(measure of how absorbing it is) and 0 = 20/2 where 20 is the diffraction angle. The DW 

factor falls off as exp( -A sin 2 0) where A is a positive constant (see Eq. 2.41). If we 

expand the trigonometric terms in the exponents we find that, to leading order, they both 

yield corrections of the form A ~ exp(-02).  They become different only in the terms of 

higher order. What this means practically is that the Bragg peak intensities need to be fit 

over a wide range of angle or Q to reliably differentiate these effects. If the range of fitting 

is not wide enough the program does not know whether it should vary the absorption 

correction or the DW factor, for example. These parameters can then take on arbitrary 

values provided that, together, they account for the intensity variation adequately. This 

effect is known as parameter correlation. It can happen to a greater or lesser degree. It is 

often more dangerous when it happens to a lesser degree because slightly, but not grossly, 

unphysical parameters will be refined. 

The problem of parameter correlation is also exacerbated by the other problem we 

discussed of an inadequate underlying model. Two partially correlated parameters (such as 

absorption and the DW factor) may be able to vary in some creative way to account for a 

fall off in intensity, due to some effect not accounted for in the model, that has a different 
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functional form to either of them. For example, as discussed in Appendix 2.3, static atomic 

displacements in the form of a bimodal anharmonic potential whose wells are occupied 
randomly give rise to an intensity fall-off which has a cos 2 Q6 functional form, where 6 is 

the magnitude of the displacements. An enthusiastic collaboration between site occupancy 

factors, scale factor, absorption factor and DW factor (and possibly other parameters) will 

be used to accommodate this effect. Exactly how this occurs will also depend on the range 

over which data are fit. We note that relatively small displacements affect the intensity 

most strongly at high values of Q. Displacement of atoms by 6 will most strongly modify 

the diffraction intensity around Q d  - -  'n'/& If 6 = 0.1 ,~, Q d  - -  31 ,~-1 which corresponds 

to a d-spacing of ---0.2 ,~, well beyond the range of most crystallographic refinements. 

2.3.4 Values of Rietveld refined DW factors: Caveat emptor 

In general, the wider the range over which data are fit the less acute are the problems of 

parameter correlations. However, in relation to this we issue one final caveat emptor. In 

Rietveld refinement the range over which data are fitted is usually limited by the problem 

of Bragg peak overlap at high angles. The acuteness of this problem depends on the 

symmetry of the material and the resolution of the measurement. Higher symmetry and 
higher resolution mean that higher values of Q can be fit. For many real-world applications 

(for example, high-temperature superconductors measured on standard neutron powder 

diffractometers) the minimum d-spacing fit is ---0.4-0.5 ,~ corresponding to a Qmax of 
--~ 12-15 ,~-1. However, with respect to DW factors, higher is not necessarily better. An 

arbitrary background is subtracted before peak intensities are calculated. This background 

subtraction is reliable in regions where Bragg peaks do not overlap since the baseline can 

be seen. An arbitrary functional form is fit to remove residual intensity in these regions. 

However, in the high-Q region the Bragg peaks overlap and the baseline is never accessed. 

The background function is basically extrapolated into this region from its fit in the low-Q 

region. In this high-Q region the Bragg peak intensities are small because of the DW factor. 
A small error in this extrapolated background could wipe out (or increase) a significant 

proportion of the real intensity in the Bragg peaks. Also, overlapped Bragg peaks yield 

craggy peaks sitting on top of a plateau of intensity coming, not only from the background 

and diffuse scattering, but also from the overlapping tails of the Bragg peaks themselves. 

Again, this will result in inaccurate DW factors being refined. Given these problems it is a 

miracle that DW factors refined from Rietveld are as good as they are. Caveat emptor: 
these problems should be borne in mind by the careful reader when assigning significance 

to Rietveld DW factors. 
In the future, for greatest accuracy, it is likely that Rietveld refinements will be 

carried out on fully corrected S(Q) functions instead of on the raw intensities. In this 

way factors such as absorption and backgrounds will not be parameterized in the fit but 

will be explicitly corrected. This has the disadvantage that significant data processing 
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must be carried out before the fitting is attempted. However, as we describe later, data 

reduction programs to obtain S(Q) are becoming faster, easier to use, will propagate 

errors reliably, and maintain data processing histories. All four of these requirements 

will be necessary to persuade Rietveld aficionados to change from their current approach 

of fitting raw data. 

APPENDIX 2.1. SCATTERING CROSS-SECTION 

Let us consider a beam of particles (photons, neutrons, electrons, etc.) with the wave 

function, 

t~0 - -  e ikr  (A2.1.1) 

When this wave is scattered by a collection of atoms at R,., as discussed in Appendix 2.2, 

the scattered wave is given by 4)1 in the first order Born approximation Eq. A2.2.24, 

e ikr 1 ~-~ eiQR i 
-- (V)qt(Q), ~(Q) = g i (A2.1 2) ~bl r (--~ . ~-- 

If the flux density of the incoming wave is Io, the intensity of the scattered beam per area 
dr 2, Is dr 2, is given by, 

1 s dr 2 -- Is r2 d O -  I01~112r 2 d O -  I 0 do" (A2.1.3) 

where o- is the cross-section. Now from Eq. A2.1.3 

d o- _ 14)112r 2 -- (V)21qffQ)l 2 
d O  

(A2.1.4) 

APPENDIX 2.2. SAMPLE SCATTERING AMPLITUDE 

A2.2.1 Simple derivation 
In the main text of this chapter, we introduced the sample scattering amplitude, 

1 ~ e i Q R  ~ qt(Q) = ~ b~ (A2.2.1) 

which forms the basis for the theory of scattering. This equation can be easily deduced as 

in the following. Let us assume that the incident wave (X-rays or neutrons) is described 
by a wave equation, 

(~init ( r )  - -  e ikinitr (A2.2.2) 
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where kin i t  is the wavevector (momentum) of the incident wave. In the case of elastic 

scattering the scattered wave has the wavevector with the same magnitude but a different 

direction, 

Xkfinal (r) = A e ikfinalr (A2.2.3) 

The basis for this expression is the so-called Born approximation, and is given below. 

However,  the phase of this wave may not be same as the incident wave, and that is the point 

of our interest. When the incident wave reaches the atom v, its amplitude is 

(~)kini t (R~) = e ikinitR~ (A2.2.4) 

where R~ describes the position of the vth atom. After scattering, the wave changes 

direction and becomes the scattered wave. The ratio between the amplitudes of the incident 

wave and the scattered wave is determined by the nature of the scatterer, and is 

independent of the position of the scatterer 

Xkfinal (R~) = B (~)kini t (R~), 
A e ikfinalR~ - -  B e ikinitRV (A2.2.5) 

Therefore, 

A = B e i(kinit-kfinal)Rz' (A2.2.6) 

By expressing B by an absolute value Bo and the phase, 6, 

A = B0 e i[(kinit-knnal)Rv+6] (A2.2.7) 

and the scattered wave is now expressed as 

/~/kfina I (r) = Bo e i[(kinit-kfina')Ru+6+kfinalr] (A2.2.8) 

By defining the scattering vector as 

Q = k i n i t  - k f i n a l  (A2.2.9) 

we obtain 

/~/kfina 1 (r) -- F(Q)x0(r) ,  F(Q)  - e ioR", x0(r) = B0 e i6 e iknnalr (A2.2.10) 

Finally, superposing the amplitudes of the waves scattered from each atom by summing 

over v, we obtain the static structure factor for the total wave scattered by an assembly of N 
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scattering objects (atoms), 

Xkfinal (r) = F(Q)x0(r), 
1 eiQR ~ F(Q) -- ~ ~ by (A2.2.11) 

A2.2.2 Born approximation 
A more rigorous derivation is the standard Born approximation (e.g. Wu and Ohmura, 
1962). The total wavefunction, ~b, is the sum of the incoming and outgoing waves and 
satisfies the Schrrdinger equation, 

h2 V2 ) 
- ~ m  + a v  ~=E~ (A2.2.12) 

where V(r) is the scattering potential located near the origin, and A is a controlling variable 
which will be equated to unity after the analysis. At large values of r, V = 0, so that 

2 2 
E _  - - , h  kinit ~ini t ( r )  - -  e ikinitr (A2.2.13) 

2m 

We now consider expanding 4) by A: 

(A2.2.14) 

Then Eq. A2.2.12 becomes, equating each order in A, 

~2 
-- ~ V 2 ~ 0  = E~b 0 

2m 

-?--s - E  4 '1-  -V4~0 

- ~ - -  - E  4~2-- -V4~ 

(A2.2.15) 

Thus, 

r "-- r (A2.2.16) 

To solve for the first order scattered w a v e  r we have to consider the Greens function, 

( -  h2 v2 - E) G(r- r')- 6(r- r') 
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e ik l r -~ l  

G ( r -  r ~) -- 4- r r l r -  r~l (A2.2.18) 

Thus, 

1 f e iklr-r~l 
~ b l -  ~ I r -  lal V(rt)eikr' dr~ (A2.2.19) 

At large distance (r >> r'), 

I r -  r~l ~ r -  r / cos 0 (A2.2.20) 

where 0 is the angle between r and 1 ~. Then, 

k l r -  r~l ~ k r -  k~r ~ (A2.2.21) 

where k ~ is a wavevector parallel to r and Iktl - k. Thus Eq. A2.2.19 becomes 

eikr ~ 
r "-" 4-rrr g(rt)ei(k-k')r~ dr~ (A2.2.22) 

Here the multiplier represents a spherical wave. If the scattering potential is a collection of 
nuclear potentials at the atoms in the solid, 

V( r ) - -  ~ V i 6 ( r -  Ri) (A2.2.23) 
i 

Then the scattered wave is given by 

e ikr 1 t ~  " e iQR i 
-- (V) ~(Q),  ~(Q)  -" g i (A2.2.24) 4,, r 

which leads to Eq. A2.2.1. 

APPENDIX 2.3. DIFFRACTION SIGNATURE OF ATOMIC DISPLACEMENTS 

To illustrate how the signature of a non-Gaussian distribution of atomic displacements 

shows up in the diffraction pattern, let us consider a one-dimensional chain of atoms 

separated by a, displaced by 6x, in alternating directions on neighboring sites. This 

happens if the local potential of an atom is double-well, and there is an anti-ferroelectric 
correlation among the displacements. The atomic position is then given by, 

R~ = va + 6x e i~  (A2.3.1) 
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Then the crystallographic structure factor is, 

F(O):~eiQR.:~.[eiQ&q-eiQ(a-&)]e i2Q/m 

= 2 N ~ [ 6 ( Q -  2nXr)c~ (2n+a 1)Tr) sin(Q6x)] (A2.3.2) 

Thus, if 6x is small the superlattice diffraction peaks at Q : (2n + 1)Tr/a have the 
intensity proportional to sin2(Q6x), with the maximum intensity appearing at Q = 7r/(26x). 
If 6x is ---0.1 A this corresponds to a Q of 15.7 ~-1.  This is why the signature of 
displacements appears at high values of Q. At low Q the intensity is proportional to 6x 2 Q2. 
This Q 2 dependence is recovered in the derivation for the diffuse scattering. The main 
Bragg peaks at Q--2nTr/a are modulated by cos2(QSx). At small values of Q this is 

approximately, 

1 
cos2(Q6x) = 1 -  -~(Q6x)2 + . . . .  e -a2&2/2 (A2.3.3) 

Thus, the effect of these displacements merely adds to the Debye-Waller factor. If the 
directions of displacements are not ordered but random, Eq. A2.3.2, is 

F(Q) : ~. e iQR~ -- ~ e i sign(v)QSx ei2Qva 

1,, v 

= 2N ~ .  [cos(QSx) + i sign(v)sin(QSx)]e i2a~a 
/J 

= 2N cos(QSx)~. 8 ( Q -  2n___~ ) (A2.3.4) 
n a 

where sign(v) is randomly + 1 or - 1. Thus the superlattice peaks would not be present but 
the intensity of the fundamental Bragg peaks is modulated by cos2(Q6x). Thus, as in 
Eq. A2.3.3 it is not easy to differentiate this factor from the DW factor unless Q is larger 
than 7r/6x. This is why the DW approximation has undeserved successes, since 
crystallographic analysis is usually done in the low Q region below 7r/Sx. 
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Chapter 3 
The Method of Total Scattering and Atomic Pair 
Distribution Function Analysis 

3.1. TOTAL SCATTERING AND THE PDF 

3.1.1 Introduction 

As we discussed in Chapter 2, in standard crystallographic analysis the Bragg peaks 

and diffuse scattering intensities were treated separately. The structure is determined solely 

based upon the information provided by the position and intensity of the Bragg peaks, 

while additional information regarding deviations from the perfect lattice is obtained 

through the study of diffuse scattering. This approach makes sense when the deviations 

are small, but when the structure is extensively disordered it fails in practice. 

In this chapter, we present an alternative approach which treats both the Bragg and 

diffuse scattering on an equal basis, the so-called total scattering technique. Data from 

throughout reciprocal space, over a wide range of Q-values, are utilized. The technique is 

both straightforward and intuitively easy to comprehend. A convenient tool here is the 

Fourier transformation. In analyzing a complex function, Fourier analysis quite often 

provides distinct and useful information that is easier to interpret. For instance, a computer 

distinguishes human voices more readily in their Fourier transforms and holographic radar 

also uses Fourier analysis as the principle of the method. In the case of diffraction it is even 

more compelling to consider the Fourier transformation since it has a very well defined 

physical meaning. Fourier analysis of the total scattering data is known as atomic pair 
distribution function (PDF) analysis. 

We first introduce the basic ideas and equations of total scattering and PDF analysis and 

give a brief and incomplete history of the subject. From Section 3.2 onwards we explore in 

more detail the application of the technique to different specialized situations such as 

obtaining compositionally resolved information, magnetic short-range order and studying 

samples in special geometries. These sections can be omitted on a first reading without 

affecting the reader's ability to understand later chapters. Finally, we discuss errors of the 
PDF, with respect to their origin and methods to minimize them. This is an important 

section, as the accuracy of the PDF method is often underestimated, and given as an excuse 

to avoid this powerful technique. This subject is discussed also in Appendix 5.3 in further 

detail. 

55 
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3.1.2 The PDF as the Fourier transform of  the scattered intensity 
The basis of the total scattering method is the normalized, measured, scattering intensity 
from a sample, the total scattering structure function, S(Q). This intensity distribution is 
a continuous function of the wavevector, Q, and in general contains both Bragg and 
diffuse intensity. It was discussed in detail in Section 2.1 and was derived in Eq. 2.9. 

The wavevector, Q, is a vector quantity and in general the intensity variation, S(Q), will 
depend on which direction one looks in Q-space. However, in many situations the 
scattering is isotropic; it depends on the magnitude of the wavevector, Q, but not its 

direction. This is true of scattering from microscopically isotropic samples such as gases, 
liquids, and glasses. It is also true from samples of finely powdered crystallites. Each 
crystallite is not isotropic, but scattering from the ensemble is isotropic. Later in the 
Chapter we will discuss extensions to cases where the scattering is not isotropic. However, 
the greatest utility of the technique to date has been to study the isotropic scattering from 
powdered, liquid or glassy samples. We therefore consider the subject in this 
straightforward limit first. Examples of some S(Q) functions (expressed as the reduced 
structure function, F ( Q ) =  Q[S (Q) -  1]) from exemplar crystalline and amorphous 
materials are shown in Figure 3.1. 

The equations shown in this section are derived in greater detail in Appendix 3.1. As we 
discussed in Section 2.1.2, it is a happy accident of the kinematical scattering equations 

that the microscopic real-space density of a material is simply given by a Fourier transform 
of the scattering amplitude, qt(Q). Similarly, the Fourier transform of the scattered 
intensity, in the form of the structure function S(Q), yields the atomic pair distribution 
function, g(r), defined by Eq. 3.1. This is happy in the sense that S(Q) is a directly 
measurable quantity and g(r) is a quantity of profound physical importance; the crystal 
structure can be determined from it. Since pog(r) is a representation of the microscopic 
atomic pair density, this relationship allows us to directly measure the relative positions of 
atoms in a solid. A straightforward numerical Fourier transform of our measured scattering 
intensity, S(Q), can be carried out in a computer according to 

G(r) -- 4"rrroo(g(r) - 1 ) _ _2 Q[S(Q) - 1]sin(Qr)dQ (3.1) 
'Tr 0 

to yield g(r), the pair-distribution function. 

As described in Section 1.1.4, g(r) is like a distance map of the inside of the solid. The 
function gives the probability of finding two atoms separated by the distance, r. An 

example of a PDF is shown in Figure 3.2 (Louca and Egami, 1999). The circles are the 
measured PDF of nickel obtained by Fourier transforming the measured total scattering 
structure function. The solid line is the PDF of the nickel crystal structure calculated using 

Eq. 1.1. The closest that two atoms can approach each other is the nearest neighbor 
distance, rnn, which in nickel is 2.50 A, and corresponds to the first peak. There is no peak 
in the PDF before this value; small peaks at shorter distances come from noise (both 
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Figure 3.1. Exemplar total scattering structure functions, S(Q), (plotted as Q ( S ( Q ) -  1), for representative 
crystalline and amorphous materials: (a) Crystalline LaMnO3 powder at T -  10 K (Proffen et al., 1999); 

(b) amorphous alumino-silicates (Petkov et al., 2000b). Note the sharp features in the crystalline S(Q) compared 
with the broad diffuse scattering from the amorphous materials. 
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Figure 3.2. The PDF of crystalline Ni at T = 10 K (Louca and Egami, 1999). 

systematic and random). Nickel has the f.c.c, structure with a lattice parameter of 

a = 3.54 ,~. Therefore, the nearest neighbor peak is from the unit cell comer to the face 

center: a/x/~-  2.50 ,~ which appears as expected in the figure. Each of the peaks in the 

PDF can be attributed to some such a tom-atom relationship or atomic-atom correlations. 
If we have a model for the atomic structure, specified by atomic positions in space, it is 

trivial to calculate g(r) and compare with experimentally measured correlation functions. 

The PDF is related to the Patterson function introduced in Section 2.2.2. Usually, only 

the Bragg peaks are used in calculating the Patterson function which therefore has the 

periodicity of the lattice. Both the Bragg peaks and diffuse intensity are included in 

obtaining the PDF. Thus the PDF does not necessarily have the lattice periodicity, and will 

be able to describe the deviations from lattice periodicity. One may also say that the PDF 

defined by Eq. 3.1 is a spherically averaged generalized Patterson function. 

The inverse transformation of Eq. 3.1 can be defined and it yields the structure function 
S(Q) in terms of G(r), 

~ o o  

1 G(r)sin(Qr)dr S(Q)= 1 + - 0  o (3.2) 

3.1.3 The PDF and all its friends and relations 

3.1.3.1 The pair distribution function, g(r), and the pair density function, p(r). We 

have chosen to define the atomic pair distribution function in terms of g(r) in Eq. 1.1. 

However, there are a host of rather similar correlation functions that the reader is likely to 

come across. They are mostly related simply by multiplicative and additive constants and 

contain the same structural information. Each has its own properties and advantages and 

disadvantages which we will try and highlight here. It is important to be able to distinguish 
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them in any given situation. Another complication lies in the fact that different authors use 

different letters for the same function, though it is common practice to define the function 

in most papers. 

As discussed in Section 1.1.4, g(r) is called the pair distribution function. It is 

normalized so that, as r ~ oo, g(r) ~ 1. Also, as we discussed in Chapter 1, as r ---* 0 (for r 

shorter than the distance of closest approach of pairs of atoms) g(r) becomes zero. It is 

closely related to the pair density function, p(r) = pog(r). Clearly, p(r) oscillates about, 

and then asymptotes to, the average number density of the material, P0 at high-r and 

becomes zero as r ~ 0. The main advantage of these functions is that they emphasize the 

low-r short-range order. In a sample with perfect structural coherence (for example a 

perfect crystal) the amplitude of the oscillations (containing the structural information) in 

these functions falls off like 1/r. However,  when these functions are determined 

experimentally the uncertainties in the data also fall off like 1/r. In this respect the fact that 

the low-r structure is emphasized is cosmetic rather than real because the uncertainties in 

the data (the error bars) scale with the amplitude of  the signal. This brings us to our next 

correlation function, G(r). 

3.1.3.2 The reduced pair distribution function, G(r). Another widely used correlation 

function is the reduced pair distribution function, G(r). This is defined as G(r) = 4xrrpo 
(g(r) - 1). From the definition, and our previous discussion, it is clear that this function 

oscillates around zero in the limit of large r. It also becomes evident by considering the 

definition that, as r ~ 0 this function behaves like - 4rrpor. That is, at low-r this function 

is a straight line going through zero with a slope that is proportional to the average number 

density of the material. 

Though less physically intuitive than g(r) itself, this function has some distinct 

advantages and is very widely used. The main advantage is that this function is the one 

directly obtained from the Fourier transform of S(Q). It is therefore the function which is 

most directly related to the data. For example, to obtain either g(r) or p(r) from the data it is 

necessary to assume a value for the average number density, Po. This is not necessary in 

G(r), on the contrary this information is already contained in G(r) as the slope of the 

function at low-r. From a philosophical point of view, there is a cleaner separation of data 
analysis to obtain the correlation function and data modeling to obtain the structural 

information from that function since there is nothing about the underlying structure that is 

assumed in obtaining G(r). 
A second advantage of G(r), related to the fact that it is the direct Fourier transform of 

the intensity data, is that the random uncertainties on the data are constant in r. This comes 

about as a direct result of the error propagation process described later. This has two 

advantages. The first is sociological. It is common to plot a correlation function calculated 

from a model on top of the measured one and to plot a difference curve underneath 
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which highlights the differences. Because the uncertainties are constant in r, fluctuations 

in the difference curve have the same significance at all values of r. Thus, for example, if 

the fluctuations in the difference curve decrease with increasing r this implies that the 

model is getting better at longer distances (perhaps it is a model of the average crystallo- 

graphic structure). This inference cannot be made from a difference curve to p(r) or g(r) 
since we expect the fluctuations to fall off as 1/r simply due to the statistical fluctuations. In 

this case the reader' s eye then has to judge whether the fluctuations are falling off faster or 

slower than 1/r (not an easy task) to judge whether the model is getting better or worse with 
increasing r. 

A danger also lurks when fitting models to p(r) or g(r). Unless a statistically weighted 

residuals function (often called the A-factor in PDF work) is used, the refinement will be 

giving statistically unwarranted importance to the low-r data. If G(r) is fit this problem is 

avoided regardless of whether a weighted or unweighted residuals function is used since 

the statistical uncertainties are constant in r anyway. 

A further advantage of the G(r) function is that the amplitude of the oscillations 

gives a direct measure of the structural coherence of the sample. In a crystal with 

perfect structural coherence, oscillations in G(r) extend to infinity with a constant 

peak-peak amplitude. In the G(r) from a real crystal the peak-peak amplitude of the 

signal gradually falls off due to the finite Q-resolution of the measurement, which is 

then the limitation on the spatial coherence of the measurement rather than the 

structural coherence itself. A higher Q-resolution results in data extending over a wider 

range of r. In samples with some degree of structural disorder, the signal amplitude in 

G(r) falls off faster than dictated by the Q-resolution and this becomes a useful measure 

of the structural coherence of the sample. This is nicely illustrated in Figure 3.3 (Petkov 

et al., 2000). The top panel, (a), shows G(r) from a pristine sample of WS2, a layered 

material with relatively good crystallinity. Figure 3.3(b) shows the data from a sample 

where the layers have been ripped apart in solution (so-called exfoliation) and then 

restacked again. In this case, the structure of the layers has changed as evident by the 

differences in G(r) at low-r. However, it is also apparent that the signal is dropping off 

more rapidly with r in the restacked sample. This means that, even within the layers, 

the structure is more disordered and there is less structural coherence. These restacked 

samples are metastable and decay back to the highly ordered pristine structures over a 
period of time. 

There is one final feature of G(r), again related to its experimental importance. In a real 

experiment S(Q) is measured only over a finite range of Q. The consequence in the Fourier 

transform is that termination ripples appear; ripples with a wavelength -~2,n-/Qmax. 

Mathematically this comes about because the theoretical G(r) becomes convoluted with 

the Fourier transform of the termination function. This is discussed in more detail in 

Section 3.5. For completeness, we simply make the point that it is G(r) that should be thus 
convoluted, not p(r) or g(r). 
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Figure 3.3. (top panel) X-ray G(r) of pristine WS2; (lower panel) G(r) of reformed sample after exfoliation. 
Circles are the data, solid lines are PDFs calculated from structural models. Note that the amplitude of the ripples 

in G(r) die out in the nanocrystalline reformed sample (Petkov et al., 2000a,b,c). 

3.1.3.3 The radial distribution function, R(r). The next correlation function we discuss 

is the most  physically intuitive. The PDF, g(r) is related to the radial distribution function 

(RDF), R(r) 1, by 
R(r) : 47rr2pog(r) (3.3) 

The radial distribution function has the useful property that the quantity R(r)dr gives the 

number  of atoms in an annulus of thickness dr  at distance r f rom another atom. For 

example,  the coordination number,  or the number  of neighbors,  Nc, is given by 

Xr 2 N c -- R(r)dr (3.4) 
1 

where rl and 1"2 define the RDF peak corresponding to the coordinat ion shell in question. 

This suggests a scheme for calculating PDFs from atomic models.  Consider  a model  

consisting of  a large number  of atoms situated at posit ions r~ with respect  to some origin. 

Expressed mathematical ly,  this amounts  to a series of delta functions, 6(r - r~). The RDF 

1 The radial distribution function is often denoted by T(r) in the literature. 
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is then given as 

bvbpc 6 ( r -  rvpc) 
R(r) = Z if'. ~b)2 

v pc 

(3.5) 

Here the b values are the atomic scattering lengths of the ions and the sums are over every 

atom in the sample. This is a restatement of Eq. 1.1 and, indeed, this property of R(r) is the 

origin of that equation. In the case of X-rays the b values are replaced by f,,(0), the value of  

the atomic scattering factor for the u-th atom at Q = 0. Note that f,,(0) --- Z,,, the atomic 

number of the species. The value r~pc -- Ir~ - rpcl is the magnitude of the separation of the 

vth a n d / , t h  ions. The angle brackets are an average over all atoms (and isotopes) in the 

model. 

The RDF has the other useful property that peaks in the function coming from well- 

defined a t o m - a t o m  pairs reflect the precise shape of the pair-probability distribution. 

In the harmonic approximation (which is rather well obeyed in most cases) these peaks will 

have a Gaussian shape in the RDF 2. In the other distribution functions we describe they 

are close to, but not exactly, Gaussian. The disadvantage of R(r) is that it diverges (like r 2) 

with increasing r making it less satisfactory to plot if the structure is being considered over 

an extended range of r. 

A number of other correlation functions come about because of different definitions of  

partial structure functions in multi-component systems. A discussion of these will be left 

until later. A thorough comparison of different correlation function conventions has been 

made recently (Keen, 2001) 

3.1.4 Brief  history 
As early as 1915, Debye (Debye, 1915) took a three dimensional average of the sample 

structure amplitude (Eq. 2.8) to obtain the scattering expected from an isotropic sample 

such as an amorphous material or a powder. The formalism of correlation functions was 

introduced later and Zernicke and Prins (1927) showed the famous relationship between 

the two-point atom pair correlation function and the isotropically averaged scattering 

function that we give in Eq. 3.1. At the time there were no high-speed computers. 

Nonetheless, the approach was applied as early as 1930 by Debye and Menke to study 

liquid mercury. Significant early work was done with the method by Warren and 

co-workers (Tarasov and Warren, 1936; Warren et al., 1936) by inverting the data 

manually using Beevers -L ipson  strips; a device as unfamiliar to modern science as the 

slide-rule. Pictures of Beevers -L ipson  strips are shown in Figure 3.4 and a short 

2 Even in the case of Gaussian probability distributions, small modifications to the Gaussian lineshape come 
from the three-dimensional powder averaging process, especially in the case of anisotropic thermal motions, as 
pointed out by Dimitrov et al. (2000) and discussed by Thorpe et al. (2002). These corrections are small but need 
to be taken into account for the greatest accuracy. 
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Figure 3.4. Picture of Beevers-Lipson strips (American Crystallographic Association). 

description of their use is presented in Appendix 3.2. Needless to say it was a tedious and 

time-consuming affair and the approach was not widely embraced. In the 1960s computers, 

often with charming names 3, began to be used in an increasing number of studies (e.g. 

Henshaw, 19603; Clayton and LeRoy, 19613; Kaplow et al., 1964, 1968; Ocken and 

Wagner, 1966), including studies of polycrystalline materials (Ruppersberg and Seemann, 

1965; Fessler et al., 1966; Temkin et al., 1973). 

The technique may have played a part in one of the most famous and controversial of all 

Nobel prizes. James Watson and Francis Crick were awarded the 1962 Nobel prize for 

chemistry for solving the double-helix structure of DNA. The breakthrough came in 1953 

at Cambridge University. Their main competitors, Maurice Wilkins and Rosalind Elsie 

Franklin, were at the University of London. Rosalind Franklin, had superb X-ray 

diffraction data from DNA (J. D. Bernal called her X-ray photographs of DNA, 'the most 

beautiful X-ray photographs of any substance ever taken'). While Franklin struggled to 

3 The computer used to transform the Henshaw data was named the 'Datatron' and located at Chalk River 
Laboratories in Canada. The Clayton and LeRoy data were transformed by 'George' at Argonne National 
Laboratory! 
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analyze the data using crystallographic analysis, including Fourier methods that Franklin 
was well familiar with from her studies of carbon (Section 9.3.2), Crick and Watson came 
up with their insightful, simple and elegant solution to the scattering data using model 
building and chemical intuition. It is interesting that Watson had his insight only after 
being shown one of Franklin' s excellent diffractograms of DNA; they had no X-ray data of 

their own. Sadly, in 1958, at the age of 37 and 4 years before Crick and Watson won their 
Nobel prize, Franklin died of ovarian cancer. Rather differing accounts of the controversy 
surrounding Franklin's role in the discovery of the structure of DNA can be read in 

Watson's book (2001), 'The double Helix; a personal account of the discovery of the 
structure of DNA', 'Rosalind Franklin: the dark lady of DNA' by Brenda Maddox (2002), 
and 'Rosalind Franklin and DNA' by Ann Sayre (2000), respectively. 

As computers got faster and more widely available in the 1960s and 1970s, the appli- 

cation of the technique in the areas of liquids and amorphous materials grew immensely 
(Warren, 1969; Klug and Alexander, 1968). However, the technique was not widely applied 
to crystalline materials. At the same time computers were also applied in the analysis of 
crystallographic data, for example, with the development of the Rietveld refinement of 
powder diffraction data. There seemed little point in Fourier transforming diffraction data 
to obtain G(r) when you could learn everything directly from the diffraction pattern, 

including the space-group symmetry, unit cell size, and with the advent of quantitative 
Bragg peak analyses such as Rietveld analysis, atomic positions. PDFs were low resolution 

affairs blighted by spurious ripples which came from the Fourier transform (termination 

errors, discussed in Section 3.5.2 and Appendix 3.3) and which people went to elaborate 
lengths to reduce artificially (Kaplow et al., 1964; Konnert and Karle, 1973). These large 

amplituded artificial ripples had a similar frequency to the data themselves and could be 
mistaken for real atomic correlations: the 'fools gold' of the PDF world. PDF analysis was 
the technique of last resort, used only in situations when crystallography was inapplicable. 

The power of the PDF in the study of liquids and amorphous materials was recognized, 
but even here there were problems. A case in point was the study of amorphous selenium. 
The PDF of a-Se was first collected as early as 1942 by Hendus (1942). New datasets from 

a-Se appeared at a rate of about one per decade (Krebs and Schultze-Gebhardt, 1955; 
Grimminger et al., 1955; Andrievskii et al., 1960; Henninger et al., 1967) until the late 
1960s. Despite this, no consensus emerged even on basic facts such as whether the 
structure was made of rings or chains. In 1968 the MIT group of Kaplow and Averbach, 

pioneers of computer based PDF work, took over. They were forced to bemoan that 'there 

is no general agreement on the structure of amorphous selenium .... the interpretation of the 
diffraction data is severely limited by the spurious detail in the experimental distribution 

functions .... it frequently appears that the methods of amorphous structure determination 
are being developed along with the structure.' (Kaplow et al., 1968) The MIT group 

attempt to resolve the situation involved an iterative computer based data analysis 

procedure to get high quality PDFs and, to our knowledge, the first example of a reverse 
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Monte Carlo modeling analysis. Research continued over the decades and as recently as 

1999 a letter appeared in Physical Review Letters discussing the structure of a-Se, which 

turns out to be ideal as a photoreceptor material in photocopiers. Now the bottleneck 

appears to be the ability to create reliable ab initio computer models of a-Se rather 

than with the PDF data themselves. In this 1999 study, calculated PDFs were compared to 

data collected in 1982 (Bellissent, 1982), and to the venerable data of Kaplow et al., 
from 1968 ! 

Termination ripples, and other artifacts coming from improper data normalization 

(which is another problem associated with low amax values) are not a problem if data are 

measured to high enough Qmax values. The reason is that, as discussed in Chapter 2, the 

signal in the real S(Q) dies off due to the Debye-Waller  factor. Terminating the data at 

more than --~ 3 times the standard deviation of the Debye-Waller  envelope results in small 

termination tipples and more reliable data normalization (Toby and Egami, 1992). This is 

dramatically demonstrated in Section 9.3.2 where PDFs of disordered carbon from data 

taken by Rosalind Franklin in 1950 are compared with PDFs from modem data. Since in 

Eq. 2.2 sin 0 takes a maximum value of 1, Qmax is < 4'n-/A. To obtain higher QmaxS it is 

necessary to use short wavelength particles. This means higher energy X-rays and 

epithermal neutrons. Widely available laboratory X-ray sources such as Cu K~, give 

Omax "~ 8 /~-1  and Mo K~, gives Omax "~ 16 ~,-1 whereas data in excess of Q - 30 ,a,-1 

are required in general. Similar limitations apply to reactor based thermal neutron sources. 

It has been the advent of synchrotron based X-ray sources and spallation neutron sources 

(as well as affordable high speed computing) that has revolutionized our ability to measure 

highly accurate PDFs. The PDF is no longer a technique of last resort and, as applied to 

crystals, yields important complementary information to a traditional crystallographic 

analysis (Egami, 1990). 

3.1.5 Multi-component systems 
The equations relating S(Q) and G(r) given above, and the definition of g(r) in Eq. 1.1, are 

quite general. However, when the system under study is composed of more than one kind 

of atom, it is generally desirable to understand the distinct structure about a particular 

chemical species. If the local coordination environment of a particular chemical species is 

well defined, this may also allow us to simplify the double-sum in Eq. 1.1. In the original 

definition, Eq. 1.1, the double sum is taken over all the atoms in the solid. We can define a 

partial pair distribution function, g~t3(r), that gives the distribution of atom pairs in the 

material coming only from atoms of type/3 around atoms of type c~ (Faber and Ziman, 

1965; Waseda, 1980; Suzuki, 1987). Starting from Eq. 1.1, we could define this as, 
1 

g~t3(r) - 4arNpor2 Y'-~{~} Y'~{/3} 6 ( r -  r~), in which case the total pair distribution 
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function derived in Eq. 1.1 would clearly be 

The normalized total scattering from the entire ensemble will be given by the contributions 
from each partial, 

This shows intuitively how a total distribution function can be built up from a 
superposition of different sub-distributions. 

Although perfectly valid, these definitions for the partial distribution functions and 
partial structure functions are not unique, and indeed are not the widely used 
standards. The most usual form for these partials is due to Faber and Ziman (1965). 
As we have discussed, in the limit of large Q, S(Q) + 1. From Eq. 3.7 it is clear 
that 1, Xp S &(Q) + 1 in the high-Q limit and the scattering from each partial, 
SLp(Q) + (b,p)2/(b)2, the ratio of the scattering cross-section of the partial to that of 
the sample as a whole. It is convenient to take this weighting factor out of the 
definition for the partial structure functions giving us the Faber-Ziman definition 

where it can be readily verified that (bUp), = c,cpb,bp. The Faber-Ziman partial 
structure functions have the property that, like the total structure function, they tend to 
unity as Q + oo (i.e. they are the S(Q) that you would measure if your entire sample 
was made of only that partial). The total structure function is then given by 

As a result of this normalization, the partial reduced pair distribution function can be 
obtained as a Fourier transform of the partial structure function, 

and substituting Eq. 3.9 into Eq. 3.1 it is readily seen that 

c c b b  
G(r) = " " Gap(r) 

,g (b)2 
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Similarly, in this formalism 

cab a caba 
1 

g~13(r)- c~ct3b~bt3 g~/3(r)-- 47rUpor2 ~. ~. 6 (r -  r~) (3.12) c~c~b~b~ ~{~} ~{~} 

and the total distribution function, 

c~c~b~b~ 
g(r ) -  ~ g~/3(r) (3.13) 

(b) 2 

Note that the measured coordination number (Eq. 3.4) also is a weighted sum of the 

coordination number of each pair, 

c ~c l3b ~b/3 
uc - Y (3.14) 

where bUc ~ denotes the number of /3  atoms around an ce atom. In the case of X-rays 

an approximation has to be made, since the structure function is given by 

c~ctff ~(Q)ft3(Q) 
S(Q) = ~" 

(f(Q))2 
S,~I3(Q ) (3.15) 

and the weighting factor, w~t 3 -c~cJ~(Q)ft3(Q)/(f(Q)) 2, is a function of Q. Thus the 
total PDF is not exactly the weighted sum of partial PDFs. It can be made to 

approximate this situation by separating the absolute value and the Q-dependence of 

f(Q). This is the so-called Morningstar-Warren approximation (Warren et al., 1936). 

First the Q-dependence of the average form factor is found, 

Z c~f~(Q) 
f(Q) -- ~ (3.16) 

~ c~G(o) 
a 

where f~(0) = Z~ is the atomic number of the ath element. The approximation is then 

made that f~(Q)= Zof(Q). The weighting factors w~t ~ are a slowly varying function of 
Q and, as poor as this approximation is, it does not pose a serious problem in 

practice. This is largely borne out by how successfully X-ray PDFs from multi- 

component systems can be fit by structural models. 
For binary systems the method by Bhathia and Thornton (1970) provides very useful 

insight. In this method partial structure functions are rearranged so that S(Q) is expressed 

as the sum of terms representing density correlation, SNN(Q), compositional correlation, 
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See(Q), and dens i ty-composi t ion  correlation, SNc(Q); 

S(Q) = SNN(Q) + 2 ~ SNc(Q ) 4- 7-b-Y Scc(Q) 

where 

(b) = CAbA + CBbB, Ab = IbA -- bBI 

SNN(Q) -- C2 SAA(Q) + 2CACBSAB(Q) + C2 SBB(Q) 

SNN(Q) = CACB[CASAA(Q) -- (CA -- CB)SAB(Q) -- CBSBB(Q)] 

SNN(Q) = CACB[SAA(Q) + SBB(Q) -- 2SAB(Q) + 1] 

(3.17) 

(3.18) 

The corresponding PDF and RDF are expressed as the Fourier transform of each term. By 

integrating the RDF over the first peak we obtain coordination numbers, Nc(NN) and 

Nr The ratio is the so-called Warren chemical or compositional short-range order 

parameter (Warren et al., 1951), 

Nc(NN) 
a = (3.19) 

Nc(CC) 

The value of a is zero for a completely random alloy, but positive for a system with 

segregation tendency, and negative for a system with AB association tendency. Chemical 

affinity between two elements results in a negative Warren order parameter. 

3.2. COMPOSITIONALLY RESOLVED PARTIAL PDF 

As we have discussed, it is often true that the three-dimensional structure of a material 

under study can be recovered from the total PDF by quantitative structural modeling. 

However,  it is sometimes desirable to determine the structure explicitly around a particular 

chemical species. In this section we describe how compositionally resolved PDFs can be 

determined in practice. 

3.2.1 Differential PDF 
In Section 3.1.5 we showed that G(r) can be defined as a sum of partial PDFs which are 

correlation functions between chemically distinct species. The partial PDFs, often referred 

to simply as partials, have a special physical significance since it is often the case that the 

relationship between particular chemical species and their neighbors is of interest. 

In order to determine all the partial PDFs of a system composed of n elements one needs 

a set of at least n(n - 1)/2 independent S(Q) data determined by diffraction measurements. 

Moreover, the measured S(Q) often are very similar to each other, and information is 

hidden in small differences among the data, thus tending to suffer strongly from noise. 
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Thus a dataset of extremely high quality is required in order to determine the partials, and 

even in such a case it is an extremely difficult task. Nonetheless, in liquids and amorphous 

materials this approach is necessary and successfully undertaken (Soper, 2000; Petri et al., 
2001). Closely related 'Differential PDFs (DDFs)' are experimentally much more 

accessible using differential techniques as we discuss below (Fuoss et al., 1981). DDFs 

over narrow ranges of r can be obtained by the XAFS measurement. This is one of the 

great strengths of the XAFS technique, which yields chemical specific local structural 
information. The relative merits and complementarities of the XAFS and PDF approaches 

are discussed in Appendix 3.4. In general the XAFS measurement is much easier to carry 

out, while a diffraction measurement provides DDFs over a much wider range of distances 

than the XAFS method can. Data interpretation is also more direct in the diffraction 
method because of the kinematical scattering. 

The differential PDF is the pair correlation function between all atoms and a particular 

chemical species that can be thought to be located at the origin; 

c[3b[3 
G~(r) = E (b) G~t3(r) (3.20) 

For example, an AB alloy will have A-A,  B - B  and A - B  partials and it will have A and B 

differentials where the A-differential is the A - A  + A - B  partials and the B differential the 

B - B  + B - A  partials. In terms of DDFs the total PDF is given by, 

c~b~ G~(r) (3.21) G(r) = E (b) 
ot  

The DDF is related to the differential structure function (DSF), 

c~b~ S~t3(Q) (3.22) 
= K <b} 

/3 

through the Fourier transformation, 

a~(r) = -- Q[S~(Q)-  1]sin(Qr)dQ 
"rr o 

(3.23) 

The DSF is related to the total structure function by 

caba 
S(Q) = E (b) s~(o)  

c~ 

(3.24) 

3.2.2 Anomalous X-ray scattering 
The scattering factor of an atom is nearly independent of the energy of X-rays except in the 

vicinity of the absorption edge of the atom where it depends rather strongly on the X-ray 
energy E, 

f (Q,  E) = fo(O) + f ' (E) + if"(E) (3.25) 
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An example of the energy dependence o f f  is shown in Figure 3.5. This energy dependence 

is known as anomalous dispersion, and originates from the resonance of the X-ray with the 

excitation of electrons in the core of an atom. Thus, if one tunes the X-ray energy to the 

edge of an element the scattering power from that particular element varies strongly with 

energy while the scattering from other elements remain more or less constant. We can take 

advantage of this special nature of the interaction between an atom and X-ray to determine 

the differential and partial PDFs. By carrying out the measurement at two or more energies 

in the vicinity of the edge of the element ce, the scattering power fa(Q) of the ce atoms 

change but those of the other constituent ions do not. By taking the derivative of S(Q) with 

respect to fa(Q), 

i3fa(Q) 

4 

~ ' 3  t -  
O t . _  2 
o 

='- 0 

ca ~ c~ffl(Q) sa /3 (Q) -  ca 

( f (Q)) ( f (Q)) ( f (Q)) 
- -  Sa(Q) (3.26) 

we get an expression for the DSF with respect to element c~. This is why Sa(Q) and Ga(r) 
are called 'differential' SF and PDF. Thus, the DSF can be determined by measuring S(Q) 
from the sample at two photon energies. Even though f~ changes most rapidly right at the 

edge, it is advisable to stay a little away from the edge. The reason is that the absorption 
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Figure 3.5. The anomalous dispersion of In scattering factors calculated near the K absorption edge. (top) 
Imaginary part, f" ;  (bottom) Real part, f~ (Petkov et  al., 2000c). 
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factor changes so rapidly near the edge, and makes the absorption correction very difficult 

since the difference in the total scattering measured at two energies is usually rather small. 
For this reason and to minimize fluorescence from the sample it is strongly advised to stay 

below the absorption edge of the sample. Examples of a DSF and a DDF determined by 

anomalous scattering are shown in Figures 3.6 and 3.7 (Petkov et al., 2000). 
By determining the second derivative we obtain the partial structure function, 

02S(Q) = cac# Sc~/3(Q) 

of~(Q)Ofl3(Q ) (f(Q))2 
(3.27) 

However, the experimental accuracy of the second derivative is low, making the 
determination of the full partials extremely difficult. For this reason such a feat is rarely 

attempted, with some successes for relatively simple systems (Waseda, 1980, 1993). 
Actually, physical understanding of the atomic environment can be achieved pretty well by 

knowing the differential PDFs alone (Price and Saboungi, 1998). If the DDF (or even the 

total PDF) shows several distinct peaks it is often not difficult to assign the chemical 

identity to each peak knowing the atomic radii. 
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Figure 3.6. (top) The In-differential structure function of Ino.sGao.sAs determined at the In K-edge and (bottom) 
the total scattering function, both plotted as F(Q) = Q[S(Q) - 1] (Petkov et al., 2000c). 
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Figure 3.7. Total PDF of Ino.sGao.sAs (top) and In-DDF (bottom) from the data in Figure 3.6. Open circles are 
the data, solid lines are calculated from a model (Petkov et al., 2000c). This confirms that the higher-r peak 

in the nearest neighbor doublet at --~ 2.5 ,~ originates from In -As  bonds. Here a high resolution total 
PDF and chemically resolved DPDF were both fit with the same structural model 

further constraining the structural solution. 

3.2.3 Isotopic substitution 
Elements found in nature are usually composed of various nuclear isotopes which differ 

from each other in the number of neutrons in the nucleus. While isotopes have almost 

identical chemical properties and result in virtually the same structure in the solid state, 

they can have different neutron scattering lengths. For instance, the value of b for 63Cu 
is 6.43 fm, while that for 65Cu is 10.61 fm. Thus by obtaining the total neutron PDF for 

two samples with identical chemical composition and structure but made of two differ- 

ent isotopes, one can determine the differential PDFs. Let us assume that one has a sample 

with the isotope 1 of an element a. The total structure function will be given by, l[ ] 
SI(Q) - (bl) 2 (cabal)2Saa(Q) + 2cabal ~ cflbflSafl(Q) + ~. cflcybflbySfly(Q) 

fl ~ ot fl y ~  a 

(3.28) 
where b a l  is the scattering length of the a isotope l, and 

( b l ) -  c,~b~l + ~. c~b~ (3.29) 
/3~a 



The Method o f  Total Scattering and Atomic Pair  Distribution Function Analysis  73 

Thus by carrying out the measurement with a isotopes 1 and 2, the difference in the 

intensity is, 

AI(Q) -- (bl)2SI(Q) - (b2)2S2(Q) 

2(b21 2 K" 
---- ca - -  ba2)Saa(Q) q- 2ca(bal - -  ba2) / .  cl3~.13~,al3,,e,l., q (O~ 

13#a 

- -  2ca(bal - baz)cabaSaa(Q) + 2ca(bal - ba2) Z c/3b/3Sat3(Q) 
/3r 

= 2c~(bal - ba2)Sa(Q) (3.30) 

where ba  = (bal  + boe2)/2. Thus, the DSF, therefore DDF, can be determined by using 

two isotopes. In principle, by using isotopes of various elements and carrying out a 

required number of measurements all the partial PDFs can be determined. However, the 

accuracy deteriorates as the number of elements involved is increased. An example of the 

DDF determined for Cu in YBa2Cu306.93 by using 63Cu and 65Cu is shown in Figure 3.8 

(Louca et al., 1999). 
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Figure 3.8. The DDF determined for Cu in YBa2Cu306.93 by using 63Cu and 65Cu. Data are the dots, the solid 

lines are calculated from models (Louca et al., 1999). 
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The greatest shortcoming of this technique is that the isotopically separated elements 

are expensive. Since neutron scattering experiments require samples weighing 10 g or 
more, the cost of isotopes to produce such samples can be very significant. Also sometimes 
isotopes do not show sufficient differences in scattering length, such as 160 (b = 5.803 fm) 

and 180 (b -- 5.84 fm). Another problem is that two samples with different isotopes may 

not be identical in structure, especially if the sample preparation is difficult. In fact the 
vibrational frequency of the lattice depends on the atomic mass, so that the isotopically 
substituted samples do not have the same Debye-Waller factor. In spite of these 
shortcoming the method of isotopic substitution is a powerful technique in identifying the 

local chemistry. A poor man's version is the chemical substitution method in which an 

element is replaced by another element with very similar chemical nature and different 
scattering length. The DDF of quasicrystalline A1-Mn was determined by replacing Mn 

with Cr that has a positive b and similar chemistry (Nanao et al., 1987). 

3.2.4 Joint total and differential PDF studies 
It is now possible to measure total PDFs with very high real-space resolution 
using high energy X-rays or spallation neutrons. By the techniques mentioned above it is 
also possible to measure differential PDFs. Differential PDFs measured using anomalous 

X-ray diffraction are often of low real-space resolution because the energy of X-rays 

used is limited to the absorption edge of the atomic species in question. For transition 
metal oxides this is generally below 10 keV; a severe limitation, though for a useful subset 
of elements in the fifth and sixth row of the periodic table it is high enough to give good 

real-space resolutions. Even when the real-space resolution is low, the chemically 

resolved PDF contains useful complementary information to the high resolution total 
PDF. It is also useful to combine two sets of PDF's determined by X-ray and neutron 

diffraction, since the partials are differently weighted. As we describe in Chapter 6, 
modeling programs exist which can simultaneously fit the same structural model to 

multiple datasets, including total and differential PDFs, There is likely to be a lot more of 
this kind of study in the future where the high real-space resolution measurement and 

the low resolution but chemically resolved PDFs put additional constraints on the 

modeling making the resulting structural solution more unique. 

3.3. MAGNETIC CORRELATION FUNCTIONS 

3.3.1 Magnetic scattering of neutrons 
Neutrons are spin-l/2 particles. The spin of the neutron interacts with electron spins that 
give rise to magnetism in materials. Neutron scattering can be used to determine the spin 

configurations and magnetic structures of the material. In general the scattering intensity 
from magnetic scattering is complicated because of its vector nature; the intensity depends 
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on the dot product of the electron spin and the scattering vector Q. We will not get into the 
details of physics of magnetic scattering and delegate it to standard textbooks (e.g. 
Lovesey, 1984), but we should note that the intensity of scattering of spin polarized 
neutrons from a magnetic material has three parts, representing magnetic (spin-spin), 

spin-nucleus, and nuclear (nucleus-nucleus) interference functions; 

/total ---- IM + ]S-N + IN" (3.31) 

Spin-polarized neutron beams can be created, usually by using Bragg diffraction from a 
magnetic crystal such as a heusler alloy, or reflection from multilayered magnetic films, 
and most recently by sending the beam through spin polarized 3He. If a similar magnetic 
crystal is used as an analyzer one can measure the intensity of scattered neutrons with the 
same spin as the incoming beam (spin non-flip) or opposite (spin flip). These two 
measurements can be done with the neutron spins either parallel or perpendicular to 

the scattering vector, Q, i.e., the polarization of the incoming beam lies either in the 
scattering plane or perpendicular to it. By combining these four sets of data the three 

terms in Eq. 3.31 can be sorted out. 
A less unique but useful way of distinguishing nuclear scattering from magnetic 

scattering is to look at the Q-dependence of the scattering intensity. Magnetic scattering 

falls off quickly with increasing Q due to the magnetic form factor as we describe below. 
The magnetic scattering intensity, IM, is related to the magnetic structure function, SM(Q), 

f,~(Q)SM(Q) I M ( Q ) -  2 (3.32) 

where fM(Q) is the magnetic form factor which is the Fourier transform of the spin density 
distribution function of an atom. For instance in transition metals such as Fe the radius of 

magnetic electrons (three-dimensional) is about 0.5 A. This means at Q - 3 ,~-1 the value 

of fM(Q)/fM(O) is about 0.5, and if S(Q) = 1 as in the paramagnetic state IM(Q)/IM(O) is 
about 0.25. In comparison thermal diffuse scattering due to phonons increases as Q 2, as 
shown in (Eq. 2.30). Thus magnetic and phononic contributions can be separated by 

examining the dependence on Q. 

3.3.2 Magnetic PDF 
A direct Fourier transformation of IM(Q) by 

pM(r) -- 2,rrZr IM(Qr)sin(Qr)Q dQ (3.33) 

gives the spin-spin correlation function. This function has broad peaks as shown in 
Figure 3.9, since the width of the peak is equal to x/~ times the radius of the spin 

distribution function around each atom. By dividing IM(Q) by the magnetic form factor to 
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Figure 3.9. Magnetic PDF of amorphous Mn-Ni obtained by the direct Fourier transformation of magnetic 

intensity, IM(Q), determined by spin-polarized neutron diffraction (Wu et al., 1987). 

obtain SM(Q) by Eq. 3.32, we can determine the atom-atom spin correlation function, 

p~(r) - -  1 
2,rr2r SM(Q)sin(Qr)Q dQ (3.34) 

which is more sharply defined, as shown in Figure 3.10. The relation between pM(r) and 
pMA(r) is similar to that between the Fourier transform of I(Q) for X-ray diffraction which 

gives an electron-electron distribution function and pog(r) which is an atomic correlation 

function. 
As is well known nickel is magnetic. Why, then, is the magnetic contribution invisible in 

the PDF, shown in Figure 3.2? The answer is that the magnetic correlation peaks are wide 
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Figure 3.10. Atomically resolved magnetic PDF of amorphous Mn-Ni obtained by dividing IM(Q) by 
the magnetic form factor to obtain SM(Q) before Fourier transformation (Wu et al., 1987). 
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and low, and completely buried under the nuclear peaks. For instance since the radius of the 

three-dimensional electron cloud in Ni is (r) -- 0.5 ,~, the full width of the magnetic PDF is 

2~/2(r) -- 1.4 A, which is 10 times of the peak width for the nuclear PDF. The magnetic 

scattering length is 0.27 fm for 1 Bohr magnetron, thus for Ni it is about 0.16 fm, while the 

nuclear scattering length is bNuclea r - -  1 fm, so t h a t  [bMagnetic]bNucleus] 2 = 0.025. So that the 
magnetic peak intensity will be only 0.25% of the nuclear peak intensity, completely 

negligible in Figure 3.2. While this is a rather extreme case since the magnetic moment of 

Ni is small and nuclear scattering length is large, in general magnetic correlation is not 

detectable from the PDF which is dominated by nuclear scattering. Spin polarized neutron 

scattering measurements are necessary to determine the magnetic PDF. 

3.4. THE PDF IN HIGHER DIMENSIONS 

When the PDF technique is mentioned it is usually assumed to apply to isotropic samples. 

In this case the data are averaged over all directions in three-dimensional space resulting in 

a one-dimensional function, g(r). However, there can be a case where the averaging takes 

place only over two-dimensions rather than three-dimensions. In this case the scattering 

data are isotropically averaged in a single, well-defined, scattering plane in reciprocal 

space. These data can then be transformed to real-space coordinates resulting in a two- 

dimensional function g(r, Qn). In this case Qn is a vector normal to this scattering plane and 

Qn is the distance along Q~ from the origin to the scattering plane of interest. This is known 

as the two-dimensional PDF. It is appropriate for studying samples with particular two- 

dimensional geometries, for example, thin films and multilayers, though to date its only 

application has been in a cylindrical geometry quasicrystal (He et al., 1993). This is 

destined to change with the advent of third generation synchrotron sources. 

A related subject is that of surface scattering and surface correlation functions. In 

this case a two dimensional average of the scattering is taken; however, because the 

scattering is from a two-dimensional object there is no structure in the scattering along 

the direction in q-space perpendicular to the scattering plane: the scattering appears as 

structureless diffuse rods parallel to Qn. What results is a one-dimensional correlation 

function, the surface correlation function. 

It is also possible to measure the entire reciprocal space of a single crystal, S(Q), and 
transform the data to real-space using a vector transform. The resulting function is a three 

dimensional PDF, g(r). Finally, we also note that lower dimensional correlation functions 

distinct from those mentioned above can be obtained by determining S(Q) from a single 

crystal along specific directions in Q-space, Qz, and Fourier transforming this information. 

This results in a layer-layer correlation function, glayer(Z) ,  where the information in 

the real-space layer perpendicular to the Qz vector has been averaged. All these correlation 

functions are defined below. 
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3.4.1 PDF defined in three-dimensions 
Let us go back to the definition of the PDF in Section 3.1. Since we live in the three- 

dimensional world both the scattering vector Q and the real space vector r are three- 

dimensional. Only by taking the spherical average, representing the powder average, did 

we arrive at the standard expression for the powder PDF (Appendix 3.1). If we do not take 

such averaging, the PDF is a three-dimensional function, given by 

1 X o o [ g ( r ) -  1 ] -  ~ [ S ( Q ) -  1]exp(- iQr)dQ (3.35) 

where S(Q) is the structure function determined in the three-dimensional Q-space, and g(r) 

is the three-dimensional density correlation function, 

1 r I / 
g(r) = ~ j p(r ;)p(r + r)dr (3.36) 

Here V is the sample volume, and p(r) is the single atom density function. The trouble is 
that in order to obtain this function the structure function S(Q) has to be determined in 

continuous three-dimensional Q-space, and this is not an easy task. For instance if we use a 
relatively coarse resolution of AQ = 0.01 ,~-1, in order to scan the entire three- 

dimensional Q-space of _ 40 .~-1, scattering data have to be collected at as many as 

5.12 • 10 ~1 points. This is not impossible with the aid of a two-dimensional area detector, 

but it requires a long measurement time and a very large memory space (500 GB). To date, 

such a feat has never been accomplished, while an attempt on a smaller scale is under 

preparation. In addition there are many complications in this type of measurement as we 

discuss below. While theoretically measuring the three-dimensional PDF may be the 

best approach to solve the problem of complex crystal structure, in practice there are 

many alternatives that can be even better than the brute force three-dimensional 
measurement. 

3.4.2 Anisotropic PDF 
If the three-dimensionality of the PDF is weak and the PDF is nearly spherically symmetric 

(isotropic), an expansion by the spherical harmonics is the easiest way to describe the 

anisotropy. We use a polar coordinate and expand S(Q) and the PDF in radial and angular 
functions, 

m (r)  
S(Q) - ~ .  S'~(Q)Y~ g(r) - ~ .  g~ (r)Y~ - (3.37) 

s g,m r 

where Y~"(a) are the spherical harmonics. S(Q) and G(r) are connected by 

g~(r) -- i~ 
2'n'2po ~ S~(Q)Je(Qr)Q2dQ (3.38) 
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g~(Q)Jg(Qr)Q2dQ S~(r)- 2,rr2p ~ (3.39) 

where Jg(x) is the s order spherical Bessel function. Note that s = 0 corresponds to the 
powder PDF, Eq. 3.1, since Jo(x) = sin x/x. 

This technique was applied to the analysis of anisotropic amorphous materials (Suzuki 
et al., 1987). In particular, if metallic glasses were exposed to both stress and heat, 

anelastic deformation could occur and store memory of deformation. If the same sample is 

heated without stress, the stored anelastic deformation is released, and the sample changes 

its shape. The microscopic origin of this memory effect was found in the topological 

change of the metallic glass structure. By measuring S(Q) after the anelastic deformation 

with the Q vector in two directions, parallel and perpendicular to the direction of the stress, 
S(Q) was found to be anisotropic, as shown in Figure 3.11. By applying the spherical 

Bessel transformation with s = 2, the anisotropic PDF was obtained as shown in Figure 

3.12 (Suzuki et al., 1987). A later study showed that the higher order terms do exist, but are 

really small compared to the s = 2 term (Egami et al., 1996). The result made it very clear 

that what changes as a result of anelastic deformation is the exchange of the atomic bonds 
as shown in Figure 3.13. In metallic glasses the most frequently found local topology is a 

triangle made of three atoms. The effect of stress is to cut some of the bonds that are 
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Figure 3.11. Anisotropic structure function of amorphous Fe annealed under stress to induce anelastic 
deformation. AS shows the difference of measurements with Q parallel and perpendicular to the direction 

of anelastic deformation (Suzuki et al., 1987). 
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Figure 3.13. Bond exchange mechanism of anelasticity to produce the anisotropic PDF shown in Figure 3.12 
(Suzuki et al., 1987). 
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parallel to the direction of the stress, and form some that are perpendicular. In this way the 

sample becomes anelastically elongated. 

This technique can also be applied to the study of crystalline materials. In such a case 
instead of the spherical harmonics one may use a set of linear combinations of the spherical 

harmonics that retain the crystal symmetry, such as the cubic harmonics. The advantage of 

this method is that we decouple the resolution of the radial function and that of the 

orientational function. Often if we have a high radial resolution we can understand the 
phenomenon well, without having a high orientational resolution. This way the amount of 

data we have to determine is very much reduced. This scheme can be implemented by 

using the pulsed neutron time of flight (tof) measurement with position-sensitive detectors 
(PSD). The resolution of the tof measurement, of the order of 10 -3, defines the radial 

resolution, while the resolution of the PSD determines the orientational resolution, usually 
of the order of 10 -2. If we collect 104 data points for a PDF at 102 x 102 two-dimensional 

mesh points the total data amounts only to 108, a much more reasonable size than in the full 

three-dimensional g(r) is measured. 

3.4.3 One-dimensional PDF and layer-layer correlations 
Quite often it is mistakenly assumed that if a one-dimensional scan of the single crystal 

scattering data is Fourier transformed it produces the atomic PDF along that direction. 

The fact is that if one collects the scattering intensity from a single crystal along Qz 
including the diffuse scattering and applies the Fourier transform, what is produced by 

such a procedure is not the atomic PDF but the atomic layer-layer correlation function, 

'I glayer(Z) = ~ O2(Zt)O2(Z t + z)dz' (3.40) 

where z is parallel to Q, L is the length of the sample in the z-direction, and O2(z) is the 
layer-averaged single atom density function, 

'I P2(z) = ~ p(r)dxdy (3.41) 

where A is the area of the sample in x - y  plane. The layer-layer correlation function 3.40 is 

often confused with the one-dimensional correlation function averaged over the entire 
sample, ' I  gl-d(Z)- p--~ p(r')p(r'+ z)dr' (3.42) 

Note that in this case the correlation function is volume averaged, while in Eqs. 3.40 and 

3.41 the density function is averaged first, before evaluating the correlation function. In 

order to obtain the one-dimensional correlation function (3.42), one has to carry out an 

integration of S(Q) over Qx-Qy space, 

1 f f  
Sz(Qz ) = -~O | | S(Q)dQxdQy (3.43) 

2 2  
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where AQ is the area in the Qx-Qy space over which the integration is carried out, and then 
apply the Fourier transform, 

gl-cl(z)- 8,n.3L [Sz(Qz)-  1]exp(-iQzz)dQz (3.44) 

Thus S(Q) has to be determined over the entire three-dimensional space before this 

analysis can be carried out. There is no easy short cut in producing a three-dimensional 
PDF. 

The layer-layer correlation is useful in some cases�9 For instance, this procedure has 

been applied to multi-layered films to determine their interfacial roughness. By measuring 

the specular reflectivity of the film with the Q-vector along the normal of the surface, the 

roughness of the interface can be evaluated through Eq. 3.40. It should be noted, however, 

the concept of lengthscale of roughness is absent from this expression. Roughness can be 

of the atomistic level, originating from atomic diffusion, or of mesoscopic scale coming 

from the imperfect surfaces such as steps in the vicinal surface. These two can be 

separated if one measures the diffuse scattering in the off-specular directions, as shown 

in Figure 3.14. By integrating the intensity in the Qx-Qy plane, one obtains the 

one-dimensional correlation function 3.42, instead of the inter-layer correlation function 

3.40 (Yan and Egami, 1993). In the case of the Pt/Co multilayered films with the (111) 

orientation the total thickness of the interface determined from the specular reflectivity is 
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Figure 3.14. Scattering intensity from a Pt/Co multilayered film as a function of Qz, normal to the surface and Qy, 
parallel to the surface showing off-specular (i.e. Qv ~ 0) diffuse scattering (Yan et al., 1992). 
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8.7 A, while the true local thickness due to diffusion is 6.9 A. The difference is due to the 

mesoscopic correlated roughness. 

3.4.4 Two-dimensional PDF and intra-layer correlation 
If the data such as those in Figure 3.14 are averaged over the angle in the plane retaining 

the radial Q length Qr - ~Q2 + Q2, 

1 f S(Q)dq~ (3.45) S2(Or, Qz) - 27rQr 

where q~ is the angle in the Qx-Qy plane, the Fourier transform of this function is the 

in-plane two-dimensional PDF, 

' f  pog(R, Qz) - ~ [S2(Qr, Qz) - 1]Jo(Qrr)QrdQr (3.46) 

where Jo(Qr, Qz) is the 0-th order spherical Bessel function. By Applying Eq. 3.46 on the 
off-specular diffuse scattering in Figure 3.14 one obtains the auto-correlation function 
for the film roughness as Figure 3.15 (Yan et al., 1992). It gives the interfacial height- 
height correlation function similar to the surface height-height correlation function 

(Sinha et al., 1988). 
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Figure 3.15. Roughness auto-correlation function obtained by Fourier transforming the diffuse scattering in 

Figure 3.14 (Yan and Egami, 1993). 
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Figure 3.16. Two-dimensional intensity contour plot of scattering from a decagonal quasicrystal A165Cu15Co2o. 
The sample was rotated about the z-axis during the experiment resulting in the intensity being averaged over h and 

k-directions. This intensity is plotted as QR at different values of Qz (He et al., 1993). 

This method was also applied on a decagonal quasicrystal A165Cu15Co2o which is 

quasiperiodic in the x - y  directions, but is periodic in the z-direction (He et al., 1993). The 

averaging over the planar angle can easily be done by rotating the sample around an axis 

(z-axis) during the measurement. By using the PDF resolved for 1 the in-plane atomic 

structure of this compound was analyzed. The results are shown in Figures 3.16 and 3.17. 

This technique can also be applied to the PDF of a surface. 

3.4.5 Three-dimensional PDF and the powder PDF 
As we discussed above theoretically the best way to determine the three-dimen- 

sional structure is to collect the diffraction data in three-dimensions and obtain 

the three-dimensional PDF. However, such a measurement is very time-consuming, and 

also a single crystal may not be always available, particularly when we are studying new 

materials. Furthermore, there are many technical complications associated with this 

method. First is the dynamic range of the measurement. The intensity of the Bragg peak is 

much stronger than the diffuse scattering by many orders of magnitude. The ratio depends 

upon the resolution, but a difference by 5 - 7  orders of magnitude is not rare. The detector 

has to be able to accommodate such a wide dynamic range, without saturation at high count 

rates and without background electrical noise at low count rates. Then, in order to measure 

the diffuse scattering accurately the background scattering has to be very low. 
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Figure 3.17.  P D F s  ob ta ined  f rom the data  in F igure  3.16. The  P D F s  s h o w n  resul t  f rom Four ie r  t r ans fo rming  data  
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The spectrometer has to be specially designed to reduce the background scattering. In 

addition for large crystals the extinction and multiple scattering of the Bragg peaks present 

a major problem. It is relatively easy to carry out a qualitative, or semi-quantitative, 

measurement of S(Q) over three-dimensions. It is very difficult to determine S(Q) with the 

precision required to obtain an accurate PDF. 

Thus the PDF is usually reduced to one-dimension by making the measurement on a 

powder sample. By taking the orientational averaging, we lose the angular information. 

This might appear as a very severe compromise, and one might argue that an accurate 

three-dimensional single crystal study of the Bragg peaks coupled with a measurement of 

the diffuse scattering over a limited Q-space as is usually done is still better than the PDF 

study when some disorder is present. However, the argument is not so simple. Firstly the 

merit of collecting all the diffuse scattering in the powder scattering should not be 
underestimated. Unless one has a very good idea where the diffuse scattering occurs in 

the three-dimensional Q-space one may miss important information in the study of 

diffuse scattering from a single crystal. The merit of being able to collect all the diffuse 
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scattering by the powder measurement often overweighs the disadvantage of losing 

angular information. 

3.5. ERROR ANALYSIS FOR THE PDF 

3.5.1 Error diagnostics 
Let us assume that you finally obtained a PDF, by the methods explained in the next two 
chapters. How do you know if the results are correct? For instance if a small, unexpected 

peak was found in your PDF, how do you know if that peak is real, or just some noise? 

Particularly if this peak fits to your theory or expectations, how do you know that you are 

not fooling yourself? A short answer is that you do not know. However, features of typical 

errors are well known, so that by elimination you can reduce the chance of making a 

mistake. The most conspicuous errors are ripples at short distances. It is physically 

impossible for atoms to come too close to each other, so that g(r) has to be equal to zero 

below a certain distance. In reality, however, G(r) oscillates around zero as shown in 

Figure 3.3, for example. In the following we discuss where these oscillations come from 

and how to reduce them. 

3.5.2 Termination and normalization errors 
As discussed in Section 3.1.4, terminating the integration in Eq. 3.1 results in spurious 
oscillation in the data, known as termination ripples or errors. In Appendix 3.3 this effect 

was shown to be given by, 

G~(r ) _ _1 G(r~ ) sin Q m a x ( r  - -  r / )  _ sin Qmax(r + / )  dr ~ (3.47) 
�9 r o r - /  r + /  

where G(r) is the true reduced pair-density function. The convoluting function defined by 

Eq. 3.47 is shown in Figure 3.18. If the PDF has a peak given by a 6-function, the 

measurement yields a peak with many satellites given by Eq. 3.47. Fortunately the PDF is 

not composed of ~-function peaks, but of wider Gaussian-like peaks because of the atomic 

vibrations. Figure 3.19 shows how the original shape of the PDF peak is restored as the 
value of Qm~x is increased. In general, if the value of Qma,, is greater than 3/((u 2>>1/2 the 
effect of termination is negligible (Toby and Egami, 1992). It is useful to consider this 

problem in Q-space. The non-zero width of the PDF peak gives rise to the Debye-Waller 

factor as discussed in Chapter 2. Because of this effect S(Q) approaches unity. That means 

the value of S(Q) - 1 becomes smaller with increasing Q, and if it is small enough at Qmax, 
the effect of termination is minimal. If Qmax is roughly equal to 3/@ 2>)1/2 the Debye-  

Waller factor is about 0.03, which is usually small enough. 
As we just mentioned, ideally S(Q) converges to unity at large Q values. However, if the 

data are not normalized well enough, S(Q) - 1 will have a step at the termination at Qmax,  

and produces strong ripples in G(r), i.e., a normalization error produces termination errors 
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Figure 3.18. PDF termination function plotted for the case of Qmin = 0.9 ,~-1 and Qmax = 40 ~, 
(Peterson et al., 2002). 

even when the true structure function converges to unity before Qmax. This is explored in 

more detail by Peterson et al. (2002). 

3.5.3 Statistical errors 

In order to eliminate the termination errors a high enough value of Qmax should be 

chosen. However, extending the range of Q increases the chances of including noise due 

to statistical errors. These are roughly proportional to S(Q)/N, where N is the detector 

count. Since in Eq. 3.1 the integral includes the multiplication by Q, the damage due to 

noise increases with Q. The error in S(Q), AS(Q), affects the PDF through (Toby and 

Egami, 1992), 

p02Ag(r)2 _ 1 4,n.ar 2 ~ .  [AS(Qv)QvdQ~sin(Qvr)] 2 (3.48) 

where v enumerates data points, and dQ~ is the Q-spacing between the data points. The 

derivation of Eq. 3.48 is discussed in Appendix 5.3 in more detail. If the noise is purely 

due to statistics, this can be approximated as 

p ~  2x/~,n-Zr I (e )  (3.49) 

where I(Q) - N(Q)/dQ, N(Q) being the detector count. These results tell us a couple of 

points regarding the statistical noise: 
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Figure 3.19. Calculated PDF of Lead assuming (u 2) = 0.0025 ~-2 comparablc to that expected at 
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can bc obtained if data arc coIlcctcd to sufficiently high Qmax without resorting to artificially damping the data. 

1. The noise in g(r), decreases with r as 1/r and is constant with r in G(r). 
2. The noise is cumulative; extending the Q range always increases noise. 

Thus it is important to determine where to terminate S(Q), by balancing termination 
error and noise. 

3.5.4 Effect of Q-resolution 
The effect of Q-resolution is different for the diffraction measurement with a 

monochromatic beam, such as high-energy X-ray scattering, and for the pulsed neutron 

tof measurement. In the case of the monochromatic beam the Q-resolution, AQ, is nearly 

constant in Q, while for the tof measurement it is approximately proportional to Q. 

Interestingly the mathematics involved in the analysis of the effect of Q-resolution is an 

exact inverse of the effect of atomic vibration discussed in Section 2.1.3. If the resolution 

is independent of Q, the effect of Q-resolution can be expressed as a convolution of 

the true scattering intensity, It(Q), by the resolution function, q~Q); 

I ( Q ) -  f It( Q - Qt)~(Qt)dQ' (3.50) 
2 
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Thus the Fourier transform is the product of the Fourier transform of each, according to 

the convolution theorem; 

g(r) = gt(r)I"(r) (3.51) 

where F(r) is the Fourier transform of the resolution function. Thus if the resolution 

function is Gaussian, the Fourier transform is a Gaussian function as well, with the 

standard deviation given by 1/~rQ, where O-Q is the standard deviation of the resolution 

function, in analogy of the Debye-Waller  factor. Thus the effect is not felt until r is large 

enough (>  2ar/AQ). 

However, in the case of the tof measurement the resolution is approximately proportional 

to Q. Thus the convolution theorem cannot be used in this case. Since the details of the PDF 

is determined by the high-Q portion of the data, the worsening resolution at high-Q is 

problematic. In Figure 3.20 the effect of Q-resolution in this case is illustrated. For O-Q -- 

0.006 the PDF becomes less defined even at 10/k, and in the medium-range distance of 

10-20 A the effect is quite visible. Thus in order to determine the PDF over a large distance 

range it is important to use a high Q-resolution, even at the expense of intensity. 

3.5.5 Effect of  other systematic errors 
As we will discuss later inaccuracies in various data processing procedures, such as 

absorption correction, contribute to systematic errors. They typically affect the data in the 

form of (Peterson et al., 2002) 

Sobs(Q) = A(Q)Strue(Q ) + B(Q) (3.52) 

As we will discuss below inaccuracies in absorption correction are represented by A(Q), 

while inaccuracies in the multiple-scattering correction and inadequate background 

correction are included in B(Q). The effect of A(Q) can be described by a convolution 

Usually A(Q) is a slowly varying function of Q, and consequently its Fourier transform 

resembles the termination function 3.47. Thus if the characteristic Q values that represent 

the periodicity of A(Q) is QE, ripples appear at 7.8/QE. As for the effect of B(Q), clearly its 

Fourier transform adds to the PDF. Again B(Q) usually varies slowly with Q, and the effect 

in the PDF decreases quickly with r. In the distance range of interest the effect is usually 

small. That is why the PDF is remarkably reliable, even though it is impossible to eliminate 

all the errors in S(Q) (Peterson et al., 2002). 

3.5.6 Remedies of  errors 
Various methods have been proposed to reduce the effects of termination error and other 

errors. Historically the most commonly used method to combat the termination error is to 

use a damping function for the window function in A3.3.1, so that S(Q) - 1 converges 
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smoothly to zero. For instance a Gaussian function, 

W(Q) - e -802 (3.53) 

is frequently used. Its effect is to add to the Debye-Waller  factor and make the PDF peak 

wider than it really is. 
Another approach is to extend S(Q) artificially beyond the range over which it is 

actually experimentally determined, so that obvious errors are reduced. One possibility is 
to force g(r) = 0 below a certain cut-off distance, and extend S(Q) either using an iterative 
method, or using the maximum entropy method. The use of the maximum entropy method 
is an attractive, but potentially dangerous, approach. While beautiful PDFs without 
oscillations can be obtained by this method, the uniqueness of the result is lost, since the 
result is strongly dependent upon the details of the constraint. For instance, depending 
upon the range in r over which g(r) -- 0 is enforced, the PDF peak height changes by a 
large amount. This is discussed further in Chapter 6. Generally, nothing is better than 
actually collecting the data accurately up to high values of Q. Other corrections are largely 
cosmetic, and would not help recovering useful information. One of the reasons why they 
are cosmetic is that the PDF is obtained by the Fourier transformation, which already is an 

excellent noise screening method. 

APPENDIX 3.1. DERIVATION OF THE PDF 

Starting from the definition of the structure factor, we derive the PDF as a convolution 
of the atomic density function. In Section 2.1 we introduced the sample scattering 

amplitude (2.4), 

1 ~(Q) = ~ ~ b~eiqa" (A3.1.1) 

For simplicity, here we assume that the atomic scattering factor is the same for all atoms, 
b,, = (b)/N. Eq. A3.1.1 can be written in terms of the atomic density function, p(r), as 

~ ( Q ) - -  ~ p(r)e iQr dr (A3.1.2) 

The structure function is 

1 1 
S ( Q ) -  ~ I aP(Q)I 2 - ~ ~ ~ p(r)p(r')eiQ(r-e)dr dr' (A3.1.3) 
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The PDF is the Fourier transform of the structure function, since, 

1 I S(Q)eiQR dQ P ( R ) -  (2"rr) 3 

1 

--8,n.3N fffP(r)p(rt)eiQ(r-r'+R)drdrtdQ 

- -  N P(r)o(r~)6(r - r~ + R)dr dr ~ 

1 X - -  N p(r)p(r + R)dr = Oog(R) (A3.1.4) 

Note that 

p(r)dr - N (A3.1.5) 
V 

For powders or isotropic amorphous materials both S(Q) and g(R) are isotropic, and 
angular variables can be integrated out; 

pog(R ) __ ~ S(Q)eiQR cos 0 dcos 0 dq~Q 2 dQ 

l lo II S(Q)eiQR cos0 d cos OQ 2 dQ 
4"rr 2 -1 

I o  sin(QR) Q2 1 S(Q) dQ (A3.1.6) 
2"rr 2 QR 

In practice the integral has to be terminated at a finite value of Q. The trouble is that S(Q) 
approaches unity at large values of Q, so that the integration, 

I~ m a x  sin(QR) 
H(R) -- S(Q) QR It Q2 dQ (A3.1.7) 

oscillates wildly as a function of Qmax. To avoid this problem it is customary to subtract unity 
from S(Q). In this procedure what is really being done is to subtract the contribution from the 
average continuum, which corresponds to subtracting unity from S(Q) and g(R), since when 
the density is uniform there is no diffraction and the structure function has to be unity. Thus 
we obtain the standard expression, 

1 X po[g(R) - 1] -- 2,rr2R [S(Q) - 1]sin(QR)Q dQ (A3.1.8) 

which is Eq. 3.1. The value of/90 has to be supplied either by calculating theoretically from 
the structure, or by actually measuring the physical density. 
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APPENDIX 3.2. BEEVERS-LIPSON STRIPS 

This account relies heavily on the excellent article 'The Mechanism of Beevers-Lipson 

Strips' Gould (1998) and the account of Warren (1990) since the authors have never had 

the pleasure of actually using Beevers-Lipson strips ourselves! 

To Fourier transform a quasicontinous function like S(Q) involves a sum over every 

point in S(Q) for each point in G(r). With modem computers we routinely utilize 1500 

points in S(Q) and compute 1000 points in G(r) which requires the computer to make 106 

calculations. This would clearly be a highly arduous task for the most ardent of graduate 

students, slide-rule in hand. It became significantly easier in 1936 with the development of 

Beevers-Lipson strips. 
The Beevers-Lipson strips were strips of cardboard which contained pre-computed 

values of 
2"rrhi 

A s i n - -  (A3.2.1) 
120 

(there were also cosine strips containing Acos(27rhi/120)). There was one strip for each 

value of A and h (4000 strips in all) and on the strip wa 

s printed 30 numbers which were the values of Eq. A3.2.1 for 1 < i < 30. Strips for integer 

values of h from 1 to 30 were available for each value of A. The values of A that were 

available were - 100 < A < 100 in integer steps, then - 9 0 0  < A < 900 in steps of 100. 

Now, let us assume that we want to Fourier transform a measured F(Q) = Q[S(Q) - 1 ] 
according to Eq. 3.1, reproduced here, 

G ( r ) -  Q[S(Q) -  1]sin(Qr)dQ (A3.2.2) 
"rr o 

This can be rewritten as a sum 

2 N 
G ( r i ) -  Z Q h [ S h  - -  1]sin(Qhri)AQ (A3.2.3) 

"rr h=l 

The argument of Eq. A3.2.1 can be written as (4~rh/60)(n/4). Thus, if we make the 

assignment Qh = (4-rrh/60) and r i = (i/4) we see that we can transform 30 Q-points in steps 

o f  "~ 0 . 2 / ~ - 1  u p  to  Qmax ~ 6.2 A-1. Furthermore, using the identity 

2"rrhi 2-rr(60- h)i 
A sin -- - ( - 1 ) n A  sin (A3.2.4) 

120 120 

allows Q-points in the range 3 0 - 6 0  to be evaluated (extending Q m a x  t o  --~ 13 A-1) using 

the available strips. Then, we make the assignment Ah -- (2/'rr)Qh[Sh -- 1 ]AQ. To increase 

accuracy it is necessary to work with A in the region - 100 to 100 and so in practice it 

would be scaled to bring the values into this range, the final PDF then being divided in turn 

by this same factor. 
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The evaluation would then go as follows. For each Q-point the Beevers-Lipson strip 
corresponding to the right h and A value was selected from the box (Figure 3.4) and placed 

on a large table. Each subsequent strip was placed below the previous one such that the 
columns of/-values lined up. The Fourier transform could then be evaluated at each/-point 

by summing the numbers on the strips in each/-column. The summation was either done 

using a mechanical calculator, or more commonly, using mental arithmetic. The 

assignment above allowed the PDF to be calculated up to 7.5 ,~ in steps of 0.25 A. By 
using the identity A3.2.4 suitably modified so that h and i are interchanged it is possible to 
extend the/-points in the range 30-60  and rmax to 15/~. 

As Warren (1990) points out 'The whole procedure is very simple and it is readily 

performed in 3 or 4 h". Nonetheless, the use of an electronic computer is definitely to be 

preferred: as Gould (1998) mentions 'Today .... Fourier transforms on several thousand 
data items...require less time than it takes to gulp down a cup of coffee'. The Beevers- 

Lipson strips approach may be healthier, but certainly more arduous and prone to error! 

Other historical gems from the Gould (1998) article include the fact that 500 boxes of 

Beevers-Lipson strips were sold between 1948 and 1970 and the big stir caused by the 

publication, in a crystallography newsletter of the British Crystallography Association, of 

a picture of Arnold Beevers and Henry Lipson in swimming costumes entitled 'Beevers 
and Lipson stripped'. 

APPENDIX 3.3. TERMINATION ERROR 

When the Fourier transformation in Eq. 3.1 is terminated at Qmax, the result can be 
rewritten as 

G ~(r) = 47rrpo[g ~(r) - 1 ] = 
2 (/Qmax [S(Q) - l]sin(Qr)Q dQ 
'rr 3 o  

2 ~oW(Q)[S (Q) - l ] s in (Qr )QdQ 
IT 

(A3.3.1) 

where W(Q) is the window function, 

W(Q) = 1 (Q <- Qmax)--0 (Q > Qmax) (A3.3.2) 

In mathematics it is well known that the Fourier transform of a product A and B, F{AB}, 
is a convolution of the transform of each, F{A} and F{B}; 

F{AB}(r ) -  ~ F{A}(r')F{B}(r- r') dr' (A3.3.3) 
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since 

f F{A}(r')F{B}(r - r')dr' -- 
1 (2,rr)2~~~A(Ql)eiQ'rldQtB(Q)eiQ(r-rJ)dQdrl 

_ 1 -(2,rr)2~~~A(Qt)B(Q)eiQFei(Q'-Q)r'dFtdQ'dQ 

1 
= 27r f f A(QI)B(Q)eiQF~(Q'- Q)dQ' dQ 

-- 27rl f A(Q)B(Q)eiQr dQ - F{AB}(r) (A3.3.4) 

Now, 

~oo 
d(r) _ ~1 W(Q)[S(Q) - 1 ] ( e  iQr - e-iQr)Q dQ 

lIT 0 
(A3.3.5) 

then 

G'(r) _ __1 W(Q)[S(Q) - -  1 ] e  iQr Q dQ 
111" 0 

+~~ (A3.3.6) 

Since S(-Q) = S(Q), if we define W(Q) as, 

W ( Q )  = 1 ( -Qmax <~ Q < Qmax)=  0 (otherwise) (A3.3.7) 

we obtain 

Gt(r)---- l~rIf  ~- oo w(Q)[S(Q)-l]eiQrQdQ-~ ~ oo wt(r-rt)G(rt)dr' (A3.3.8) 

where G(r) is the ideal PDF, 

1 ~  ~176 G(r) -- ~ [S(Q) - 1]eiarQ dQ 
1"1T -oo 

-- i~rl [~~176 [S(Q) - l]eiQrQdQ-k- ~ ~ [S(Q) - I]eiQrQdQ] 

X 1 [ oo [S(Q) - 1]eiQrQ dQ - [S(Q) - 1]e-iQrQ dQ] 
izr o o 

2 ~~ [S(Q)- 1 ] s i n ( Q r ) Q d Q  
71" 

(A3.3.9) 
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and wt(r) is the Fourier transform of the window function, 

1 fQmax e iQr d Q -  
w t ( r ) -  ~ .J -Qmax 

sin(Qmaxr) 
(A3.3.10) 

This function, shown in Figure 3.18, has a large central peak, and becomes a 6-function at 

the limit of infinite amax. However, for finite values of Qmax it has side ripples that decay 
with distance. These ripples produce the termination errors. The first side peak is located at 
r -  7.8/Qmax. Eq. A3.3.8 may be expressed as, 

~ 0 

w t ( r -  r')G(r')dr' + -co w t ( r -  r')G(r')dr' 

= ~o [ w t ( r -  r I) -- wt(r + rl)]G(rl)d/ (A3.3.11) 

or, 

[ G'(r) _ _1 G(r') sin Qmax(r- r/) 
�9 r 0 r - r  g 

sin Qmax(r -k- r/) ]dr/ 
1 r + d  

(A3.3.12) 

APPENDIX 3.4. THE X-RAY ABSORPTION FINE STRUCTURE (XAFS) METHOD 
AND THE PDF METHOD 

The X-ray absorption coefficient of a solid has many oscillations as a function of energy 
just above the absorption edge, which is called the X-ray absorption fine structure (XAFS). 

This phenomenon has been known for a long time, but was interpreted only in the 1970s in 
terms of the interference between the wavefunction of outgoing photoelectrons with that of 
photoelectrons backscattered by the near neighbors (Stem et al., 1975; Lytle et al., 1975). 
By analyzing these oscillations the distance to the neighboring atoms can be determined. 
Since photoelectrons come out primarily from the element, of which absorption edge is just 
below the energy of the incident X-ray, the XAFS provides the information about the 
environment of a particular element. Details about the technique can be found in a recent 
general text (Koningsberger and Prins, 1988). 

The X-ray absorption coefficient, /x(E), where E is the energy of X-ray, may be 
expressed in terms of the momentum of the outgoing photoelectron, 

x / m ( E -  Eedge) 
k -- h (A3.4.1) 

where m is the mass of an electron, and Eedg e is the absorption edge energy, as/x(k). By 
normalizing it against that of an isolated atom,/x0(k ), one obtains X(k), 

~(k) 
X ( k ) -  - 1 (A3.4.2) 

/x0(k) 
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Its Fourier transform 

G(r ) -  f e2i~rx(k)k n dk (A3.4.3) 

where n = 2 or 3, is called the PDF. Indeed the position and intensity of the peaks of IG(r)l 
roughly correspond to interatomic distances and coordination number. Also from the phase 
of G(r) it is often possible to determine the chemical identity of the neighboring atoms. 

However, because of many factors involved in scattering of electrons, X(k) is modified 
in various ways. For instance the PDF peak appears usually at a distance significantly 
shorter than the real distance due to the phase shifts. Also X(k) can be strongly affected by 
multiple scattering, in particular if atoms are nearly linearly lined up. Furthermore, X(k) is 
given as the sum of contributions from various neighbors, 

X(k) -- Z XJ (k)e-2ikrj (A3.4.4) 
J 

where rj is the distance to the neighbor j, while the form factor, xj(k), depends strongly onj. 
This form factor describes the atomic potential that scatters electrons and the life-time of 
photoelectrons, and its amplitude decreases rapidly with rj. Thus the Fourier transform of 
X(k) is not exactly the pair-density function (PDF). As shown in Figure A3.4.1 as an 
example G(r) is significantly different from the PDF both in the peak shape and intensity. 
Thus the experimental data themselves do not directly provide the structural information, 
and the structure is determined only through calculating X(k) and its Fourier transform for 
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Figure A3.4.1. Comparison of the differential PDF of amorphous MosoNis0 determined using EXAFS and 
anomalous X-ray scattering at Mo and Ni edges (Aur et  al. ,  1983). 
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a particular model. The problem is that the theoretical X(k) depends upon the method of 

calculation, and there is no unique way of calculating it. This lack of uniqueness is the 

greatest weakness of the XAFS method. Even though the XAFS method is easy to 

implement it is dangerous to rely upon the results of the XAFS analysis alone. 
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Chapter 4 
Total Scattering Experiments 

4.1. GENERAL CONSIDERATIONS 

4.1.1 Monochromatic and polychromatic (energy-dispersive) diffraction methods 
A powder diffraction experiment consists of measuring the scattered intensity as a function 

of momentum transfer, Q. As is clear from Eq. 2.6 the value of Q can be varied by changing 
either 0, or k(A). The former corresponds to the monochromatic beam angle-dispersive 

diffraction and the latter the polychromatic (white) beam energy-dispersive method. In the 

energy-dispersive method, the diffraction pattern is determined by the spectroscopy of the 
diffracted beam. 

In the case of X-ray scattering the spectroscopy is most conveniently and quickly done 

by using an energy sensitive solid state detector, such as a Li-drifted Si detector or an 

intrinsic Ge detector. These detectors have an energy resolution of about 1% that limits the 

Q resolution. The spectrum from a diffracted white (non-monochromatic) beam includes 

not only the diffracted peaks, but also other peaks such as the fluorescent peaks, escape 

peaks, and two-photon peaks, in addition to the inelastic Compton modified scattering 
intensity. The analysis of the spectrum is complex, but totally feasible (Egami, 1978). The 

greatest advantage of the energy-dispersive method is the speed of data acquisition. It is 

therefore most often used where intensity is an issue or when the geometry prevents wide 

diffraction angles being accessed, for example, in the study of amorphous materials under 

high pressure in diamond cells and studies of surfaces. However, the data analysis is 

troublesome and angle resolved diffraction is preferred when intensity is not an issue. In 

the case of neutron scattering, on the other hand, spectroscopy can be done by the time-of- 

flight (tof) method. Pulsed neutrons generated by a spallation source are used for such 

measurements. By knowing the time of pulse generation the tof can be determined by the 

time of arrival of the scattered neutron. The Q resolution is determined by the ratio of the 

size of the moderator to the length of the flight path, which can be 1:1000, achieving the Q 

resolution of 0.1%. As we discuss below, this is the preferred method for neutron powder 
diffraction in total scattering studies. 

4.1.2 Single crystal and powder diffraction methods 
The key to single crystal diffraction measurements is to align the reciprocal lattice vector 
of the material, K, to Q, so that the Bragg condition is achieved (Eqs. 2.11 and 2.12). For 

this purpose the sample orientation as well as the diffractometer setting have to be changed 

to achieve the maximum agreement of K and Q. In the modern diffractometer the 

103 
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orientation of the crystal is changed by a motorized goniometer that is run by a computer. 

Once the crystal orientation is recorded in the computer, the crystal and detector can be 

oriented to scatter from any desired Miller indices simply by specifying them. 
Powder experiments are simpler since the sample is isotropic and there is no need to 

worry about the sample orientation. In this case only the magnitude of Q is of importance. 

Varying Q is achieved by varying 20. It is important, however, that the powder is truly 

isotropic. Often because of gravity, stress or surface the powder is textured, that is the 

crystalline grains are preferentially oriented. The diffraction data from a textured sample 

can be very misleading unless the texture is well characterized. 

4.1.3 Accuracy of the measurement 

We will now consider the general principles that govern the accuracy of the measurement. 

In discussing accuracy it is important to separate accuracy in determining the Q values and 

accuracy in measuring the intensity. The accuracy of the Q values defining the positions of 

the Bragg peaks determines the accuracy of the derived lattice parameters. It is relatively 
easy to obtain high accuracy in the Q values by using a high quality monochromator, good 

collimation and good alignment. The intrinsic resolution of a monochromator is 

determined by its Darwin width, or mosaic spread if it is a mosaic crystal. The Darwin 

width can be calculated by using dynamical diffraction theory, but it can be rationalized by 
recognizing the fact that when the Bragg condition is met the X-ray can penetrate the 

crystal only by a certain amount even without absorption, since it is diffracted. This 

penetration depth, or the extinction length, /~ext, defines the uncertainty in the momentum 

transfer by Aq--2'rr/Aex t .  In practice, monochromator line-widths are determined 
experimentally by measuring a rocking curve. This is accomplished by initially fixing 0 

and 20 to fulfill the desired Bragg condition. The crystal is then 'rocked' by varying 0 at 

fixed 20. 
The best way to obtain high collimation is to use a synchrotron radiation source that 

has a natural collimation due to the small source size and the large source- 

monochromator distance. The source size is defined by the size of the electron or 

positron bunch in the storage ring. Source-monochromator distances are generally more 

than 10 m and can be considerably longer than that, especially at third generation 

synchrotron sources. The beam intensity remains high despite these long source-mono 
distances because of the relativistic squeezing of the radiation emitted by the electrons 

into a narrow cone around their direction of motion, i.e. tangential to the ring. In high- 

resolution X-ray measurements using a synchrotron source the resolution can approach 

the Darwin width of the monochromator, which is of the order of 10 -5. Thus, a lattice 

constant can be determined down to four decimal points. The resolution of neutron 

spectrometers is lower since neutron beams cannot be as highly collimated because of the 

lower source intensities. Presently the best resolution achieved by neutron diffractometers 
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is of the order of 10 -3 . By curve fitting, however, the lattice constant can still be 

determined with the accuracy of 10 -4. 

Of great importance in a PDF measurement is the accurate determination of the 

intensity of diffraction. This gives information about the position of atoms within the unit 

cell through Eq. 2.14. The intrinsic accuracy of the intensity measurement, AI/I, is 

determined by the statistical accuracy of the particle count, 

AI 1 
(4.1) 

where N is the number of phonons or neutrons counted by the detector. However, the 

measured intensity is affected by other factors such as absorption, sample geometry, 

polarization and the Debye-Waller  factor, and it is not necessarily easy to correct for these 

effects with high accuracy. Thus one has to use good judgment before accepting the atomic 

position determined down to many digits as is often published in the literature. Errors in 

measured intensities are discussed in more detail in Appendix 5.3. 

4.2. THE NEUTRON SCATTERING EXPERIMENT 

4.2.1 Sources 
Pulsed neutrons can be produced either by an accelerator based spallation method, or by 

using a mechanical chopper at a reactor source. In the spallation method protons are 

accelerated to high energies (--~ 1 GeV) and hit a target made of a heavy metal such as 

tungsten or uranium. Through violent collision protons shake down some neutrons from 

the nuclei of the target element by spallation, producing fast neutrons with the energy of 

several MeV. These fast neutrons are slowed down by a moderator, usually made of water 

or organic solid or liquid methane. See the Selected Bibliography for more information 

about spallation sources. 

At a spallation neutron source data are best collected using the time-of-flight method. 

This makes the best use of the natural time-structure of the source that results in large 

fluxes of neutrons at the peaks of the pulses despite rather modest time-averaged fluxes. 

Spallation neutron sources are particularly valuable for PDF measurements. This is 

because of the large flux of epithermal neutrons that are under-moderated: they exit the 

neutron moderator before reaching thermal equilibrium. The epithermal neutrons are the 

short-wavelength neutrons that yield the important high-Q information (Section 3.1). With 

such sources, Qmax'S in excess of 100 ~ - 1  can be possible. Table 4.1 gives the existing 

(and proposed) sources, and the instruments suitable for high resolution, wide angle, total 

scattering and PDF measurements at the time of writing. For convenience, web-site 

addresses are also included where more information can be obtained about these facilities 
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Table 4.1. Present and future spallation neutron sources and instruments suitable for PDF measurements. 

Source Location URL Instruments 

Intense pulsed neutron 
source (IPNS) 

ISIS 

KENS 
MLNSC (Lujan 

Center) 
Spallation neutron 

source (SNS) 
European spallation 

source (ESS) 

Argonne National www.pns.anl.gov SEPD, GLAD, 
Laboratory, Argonne, GPPD 
IL, USA 

Rutherford Appleton www.isis.rl.ac.uk POLARIS, GEM 
Laboratory, Chilton, 
Oxon, UK 

Tsukuba, Japan neutronwww.kek.jp HITT-II 
Los Alamos National Lab, www.lansce.lanl.gov/ HIPD, HIPPO, 

New Mexico, USA lanscel 2/index_12.htm NPDF 
Oak Ridge National Lab, www.ornl.gov/sns/ 

Tennessee, USA 
www.ess-europe.de 

and the procedures for obtaining beamtime. For up-to-date web information check the total 

scattering web page, http://www.totalscattering.org. 

4.2.2 Diffractometer 
Neutron powder diffractometers can be split into two main categories: angle-dispersive 

diffractometers at reactor sources and time-of-flight diffractometers at spallation neutron 

sources. 1 PDFs can be obtained from either kind, though as discussed in Section 4.1.1 the 

tof method is more useful for high resolution total scattering. Angle dispersive neutron 

diffractometers resemble two-circle X-ray powder diffractometers that are described in 

more detail in Section 4.3; in fact, similar diffractometer hardware can often be seen at 

neutron and X-ray sources. Because they are more useful for PDF measurements we 

describe in more detail tof diffractometers. 

The diffractometer itself consists of a sample holder surrounded by fixed detectors. A 

collimated beam of neutrons emerges from the moderator close to the neutron source and 

travels down a beam-pipe to the sample position. This is shown schematically in Figure 4.1. 

In total scattering measurements from crystals a balance must be struck between 

Q-space resolution and intensity. Conventional wisdom was that PDF experiments are flux 

limited and the primary beam-path should be as short as possible. What has become 

apparent more recently is that because of details of the strange Q-dependent asymmetric 

instrument resolution function (a legacy of the non-Gaussian source spectrum), the 

Q-space resolution does affect the real-space resolution and at least moderately good 

A number of other more exotic possibilities are also possible such as time-of-flight diffractometers at reactor 
sources, Fourier diffractometers such as HRPD at JINR at Dubna in Russia, and so on, though are not considered 
here. 
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Figure  4.1. Schematic of a neutron time-of-flight powder diffractometer. The SEPD at IPNS, a first generation 
TOF diffractometer is shown. This diffractometer has -- 160 detectors arranged in banks in the scattering plane 

along the locus of the large circle. 

Q-space resolution is desirable for high-quality total scattering and PDF work. 

Additionally, there is a trend emerging for studying samples using both conventional 

crystallographic methods (e.g. Rietveld refinement) and PDF, in which case Q-space 

resolution is clearly beneficial. The best compromise is an instrument on a relatively short 

flight-path which still has a Ad/d resolution of - 0 . 2 %  or better. The instruments of the 

greatest utility are situated on primary flight paths in the range of 10-25 m. 

Diffractometers can be moved farther from the source without completely compromising 

the intensity with the use of neutron guides in the primary flight path. Unfortunately, these 

guides are very inefficient at propagating epithermal neutrons that give the important high- 

Q information in S(Q) and do not result in performance gains for total scattering 

measurements. Diffractometers without guides on longer flight paths are viable for PDF 

measurements at brighter sources such as the SNS. The higher resolution is always 

desirable if flux is not compromised too greatly. 

The neutron beam is collimated, usually using boron containing rectangular shaped 

inserts placed before the sample, into a beam of dimensions - 1 cm x 4 cm. To optimize 

the scattering from the sample, it is therefore desirable to make the sample of similar 

dimensions. Samples generally are held in cylindrical containers made of natural 

abundance vanadium which is a metal that can be extruded and machined but which 

happens to scatter neutrons almost totally incoherently. It therefore contributes an almost 

smooth (tiny residual Bragg peaks remain) flat background that can be subtracted. The 

sample cans can be designed with seals allowing a heat-exchange gas (e.g. He for low 

temperature measurements) to be incorporated which helps to keep the large sample in a 

state of thermal equilibrium with the sample environment without having to rely on 
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inefficient heat conduction through the loosely packed powder. This results in rather small 

temperature gradients across the sample despite its large size. 
The secondary flight path is usually in the vicinity of 1 -2  m. Low angle detectors can 

be located further from the sample to compensate somewhat for their inferior resolution. 

Indeed, by placing detectors continuously along a carefully designed locus of sample- 
detector distances almost complete resolution compensation can be achieved meaning the 

resolution in each detector is approximately constant. Indeed, this will be the basis of a 
next generation tof powder diffractometer at SNS. The vicinity of the sample is usually 
evacuated to cut down air scattering and to facilitate the use of sample environments that 
require vacuum such as cryostats and furnaces. Because of the large dimensions of these 

instruments the full secondary flight-path is not generally evacuated since this would 
require very strong steel vacuum cans to support the atmospheric forces. Beam absorption 
by dry gas (air, nitrogen or another inert gas) is small so there is no particular gain in 

intensity by evacuating the flight paths. 
In contrast to most angle-dispersive measurements, the detectors sit at fixed angle and 

do not move. Instead, the intensity vs. Q diffractogram appears as an intensity vs. neutron 
energy spectrogram in each detector. The data consist of the histogram of neutrons that 

arrived at various time intervals after the generation of the incident pulse, as shown in 
Figure 4.2. The time-of-flight, t, over the path L, translates into the neutron velocity, 

v = L/t. This gives the momentum hk = mv, and the diffraction vector Q for elastic 

scattering by Eq. 2.6, 

2mL 
Q -  - -~  sin O. (4.2) 

Thus tof is inversely related to Q (Figure 4.2). 
In principle the experiment could be carried out with a single, energy resolving, detector 

at a fixed position. In practice, enormous gains in efficiency are possible by filling more 
solid angle with detectors. Early tof diffractometers had 10s or 100s of detectors which 
were grouped into 'banks' centered at certain diffraction angles. The modern trend is to fill 

as much solid angle as possible with detectors. This is immediately apparent by comparing 
the schematic of SEPD in Figure 4.1 with those of GEM at ISIS (Figure 4.3) and NPDF 
(Figure 4.4) at the Lujan Center at Los Alamos, both second generation diffractometers. 
NPDF has been upgraded from a conventional first generation tof powder diffractometer to 
be optimized for total scattering and PDF measurements and its layout before and after the 
upgrade are shown in Figure 4.4 for comparison. GEM was designed and built from the 
ground up as a second generation diffractometer and has 6500 detectors filling 3.5 

steradians (sr) (out of 12.6) with detectors. Another excellent example of a second 

generation diffractometer is HIPPO at the Lujan Center. 
The diffractograms in each detector are shifted in energy, or time-of-flight, due to the 

different diffraction angles (Eq. 2.2). In older diffractometers detectors were grouped 
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Figure 4.2. Data from SEPD showing intensity vs. time-of-flight from a crystalline sample of Rb3D(SeO4)2. In 
(b) the same data are shown with the time-of-flight variable converted to Q using Eq. 4.2. 

together in banks that had comparable resolution�9 The data from the detectors in a bank 

are combined by shifting the spectrum to account for the different position of the detector, 

a process known as 'time-focussing'. This was done electronically in early diffracto- 

meters to avoid the creation of large data-sets from spectra of thousands of points from 

hundreds of detectors�9 With the increase in computer speed, and reduction in cost of data 

storage, this is no longer necessary, even with the thousands of detectors on modern 

instruments: spectra from individual detector elements are now typically stored. The data 

corrections and reduction are then carried out using software allowing greater flexibility 

for choosing to include or exclude particular detector elements or to reprocess data 

a postefiori. 

An important consideration with tof diffractometers for quantitative measurements is to 

have a stable, constant temperature, moderator resulting in a time-stable incident 

spectrum. An example of the incident source spectrum from a spallation source is shown in 

Figure 4.5. At lower power sources the moderator material of choice has been solid or 

liquid methane that has good spectral characteristics for diffraction. Water moderators 

seem to have better stability making them attractive for PDF work and the advantages of 

methane for conventional diffraction (more intensity at longer wavelengths, or lower Qs) 
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Figure 4.3. (a) Plan view of the second generation TOF powder diffractometer, GEM at ISIS showing the 
Gem-shaped sample tank and the positions of the six detector banks. Note that symmetrically arranged banks 

are present on the other side (not shown) (b) 3D computer generated design drawing of GEM showing 
the --~ 3.5 sr of detector coverage. 

are less apparent in total scattering measurements.  Moderators at the SNS are likely to be 

liquid-H2 which are expected to be well suited to PDF measurements.  

Finally, data corrections are made for instrument specific effects such as backgrounds 

and moderator  instabilities (Chapter 5). These effects must be kept to a minimum for 

accurate PDFs to be determined.  Fundamenta l  addit ional  requirements  for the 

diffractometer therefore are low backgrounds, stable detectors and detector electronics, 

stable beam monitors and a stable moderator. The low backgrounds are achieved primarily 

by excellent collimation and shielding, including a well shielded primary beam dump, or 

'get lost tube '(Figure 4.1). Tight secondary collimation between the sample and the 
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Figure 4.4. Schematic of the NPDF tof diffractometer at the Lujan Center at LANSCE before, (a), and after, 
(b) and (c), being upgraded from a conventional first generation diffractometer to one optimized for total 

scattering studies. The exploded view in (c) shows the enormously enhanced detector coverage. The detectors are 
position sensitive 3He tubes. As a result of the upgrade the number of detector pixels is increased from 62 to 6544 

and detector area coverage is increasing from 4960 to 27 800 cm 2. The increase in detector coverage is 
concentrated in the important backscattering region. 
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Figure  4.5. Example of a source spectrum from a spallation neutron source. The one shown is from SEPD 
at IPNS. It is measured using an incoherently scattering vanadium rod and some residual Bragg-peaks 

are evident. Note the Maxwellian peaked around 7 ms crossing over into a quickly rising 
epithermal tail at short times (high energies). 

detectors is useful to lower backgrounds from special environments such as the heat shields 

from cryostats and furnaces, as well as lining the sample can and secondary flight path with 

borated 2 absorbing material. For the lowest backgrounds, oscillating radial collimators can 

be used. These solve the competing problems of wanting absorbing collimators in the 

secondary flight path (so only neutrons scattered at the sample position enter the detector) 

and wanting to fill solid angle with detectors. Radial collimators will tend to shadow the 

detectors, but by oscillating the collimators, no detector is shadowed all the time. The 

radial collimator for GEM is shown in Figure 4.6. There is, of course, some loss in intensity 

so their use will depend on whether more intensity, or lower backgrounds, are the primary 

consideration in a particular measurement. 

4.2.3 Neutron detection 

Neutrons are weakly interacting neutral particles and are difficult to detect. The usual 

method is to incorporate a special isotope into a gas or a solid that captures neutrons and 

then decays quickly with the production of a some strongly ionizing radiation such as high 

energy protons. The problem then becomes to detect the ionizing radiation which is done 

using similar technologies to those used for detecting X-rays as discussed in Section 4.3.3. 

The most common detectors use pressurized 3He gas in a tube (Figure 4.7). The relevant 

nuclear reaction in this case is 3He + n ~ p + "r + ~/where n is the neutron, p is a proton, 

is a gamma ray and -r is a triton, the nucleus of a tritium atom. The tube is constructed as 

2 Cadmium, sometimes used as a neutron absorber, is not suitable in total scattering diffractometers that make 
use of the epithermal neutrons because of its strongly energy dependent absorption in this energy range due to a 
l l3cd absorption resonance. 
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Figure 4.7. Photograph of a bank of 3He tube position sensitive detectors that are now installed on NPDF at the 
Lujan Center. 
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a proportional counter with a wire down the middle that is maintained at a high voltage. 

The gas in the tube in the vicinity of the nuclear reaction is ionized by the high energy 

proton and triton and the ionized gas results in a charge pulse in the wire of the proportional 

counter. The charge pulse is swept out of the detector due to the applied voltage, amplified, 

converted to a digital pulse and recorded in a computer. In tof diffractometers, the time of 

arrival of the neutron must also be determined accurately which is accomplished 

electronically. These 3He tubes can also have a position sensitivity such that the position 

along the wire where the neutron arrived is also recorded. This is done by determining the 

relative time it takes the positive and negative charge pulses to reach the ends of the 

detector, the ratio giving the distance of arrival along the detector. These tubes are 

typically 1-2.5 cm in diameter and 0.5-1 m in length. The gas inside is typically a 
mixture of 3He with small amounts of other gases (for example, propane) for absorbing the 

proton and the triton more effectively and quenching the charge avalanche. To improve 

neutron detection efficiency the gas is maintained over pressurized to a few atmospheres. 

To reduce background counts it is desirable to lower the sensitivity of the detector to 
gamma rays by an appropriate choice of gas mixture. 3He tubes are known for their high 

detection efficiency, low sensitivity to gammas and adequate position sensitivity and 

count-rate capability. Another factor is the many years of experience with this kind of 
technology. 

Other useful nuclei for neutron detection are 6Li, l~ ~55Gd and 157Gd. The Li, B and 

Gd isotopes tend to be used in scintillator detectors or as thin solid foils, though BF3 is 

gaseous and can be used in a proportional counter similar to a 3He tube. A scintillator 

material is either doped with the absorbing nuclei or manufactured out of it (e.g. LiF or 

LiI). The nuclear reaction results in ionizing radiation that is absorbed by the scintillator 
that then gives off visible light. This light is shone onto an anode that emits electrons 

through the photoelectric effect. These are accelerated and amplified in a photomultiplier 

tube to produce a charge pulse that is converted to a neutron count. Position sensitivity is 

produced in these detectors by pixelating the detector and extracting light from each pixel 
using shielded optical fibers. An advantage of this technology is that the detector can be 

manufactured in any shape allowing solid angle to be filled very effectively with small 

amounts of dead area (see Figure 4.8). Also, with improved commercial manufacturing 

processes used the cost per steradian of these detectors is becoming rather low. Earlier 
problems with gamma sensitivity and low efficiency, especially for higher energy 

neutrons, are also now being successfully resolved. There is some probability that this 
technology will replace 3He tubes in a number of applications. 

4.2.4 Beam monitor 

Quantitative experiments such as total scattering measurements need to be normalized 

by the total neutron flux on the sample. This is accomplished by measuring the incident 
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Figure 4.8. Photographs of scintillator detectors now installed on GEM at ISIS. (a) shows a close-up of 
V-shaped scintillator elements. (b) shows the elements built into space-filling modules with shielded 

photomultiplier tubes sticking out of the back of the modules. The light from the scintillator reaches the 
photomultiplier tubes via optical cables which cannot be seen inside the modules. 

b e a m  intensi ty us ing a b e a m  moni tor .  B e a m  moni to rs  are p laced  ups t r eam of  the sample  

(Figure  4.1). T h e y  usual ly  consis t  of  an incoheren t ly  scat ter ing v a n a d i u m  foil  p laced  in the 

b e a m  with  one  or more  neu t ron  detectors  loca ted  off  the axis of  the beam.  In order  not  to 
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compromise the counting statistics of the measurements it is desirable to have as many 

counts as possible in the monitor which is why multiple detectors around the vanadium foil 

are now considered desirable, as for example, on GEM. If the incident spectrum from the 

moderator is very time-stable, the spectrum in the beam monitor can be integrated over all 

energy and just used to scale the intensities in the main detectors. However, it is sometimes 

preferred to normalize the detector spectrographs point-by-point by the monitor 

spectrograph to account for spectral instabilities. In this case, the spectrum from the 

beam-monitor is often smoothed (it contains no sharp features anyway) so counting 

statistics becomes less of an issue, although, there is the possibility that this smoothing 

introduces systematic errors. These days moderator stability and adequate beam 

monitoring are probably the accuracy limiting factors in most tof neutron PDF 

measurements and they are receiving renewed attention in current and next generation 
diffractometers. 

One of the key parameters required in the data analysis (Chapter 5) is the total 

scattering cross-section of the sample. This depends on energy, but to a good 

approximation is inversely related to the neutron energy. It is often, therefore, calculated 

theoretically knowing the neutron scattering cross-sections of the constituents (measured 

traditionally at 1.3 ~, neutron wavelength), the sample density and size (therefore the 

number of scatterers) and using the approximate energy dependence mentioned above. A 

more precise determination of the total attenuation cross-section can be made if a second 

beam-monitor is placed after the sample (Figure 4.1). The ratio of the two monitors then 

gives a measure of the sample attenuation cross-section as a function of energy. This is 

not done on most utilitarian tof powder diffractometers due to engineering difficulties and 

lack of enthusiasm. One notable exception is the liquids diffractometer, SANDALS at 
ISIS. 

4.2.5 Measurement geometry 

Because of the fixed detector geometry, wide solid angle coverage and rectangular beam- 

shape, the normal geometry of the measurement is to have cylindrical samples. This is 

particularly appropriate in previous generation diffractometers where all of the detectors 

were arranged in the (horizontal) scattering plane at the same height as the sample. This 

geometry is the most natural when multiple detectors at different angles are used. Current 

and next generation diffractometers have detectors that sit above and below the scattering 

plane. In this case a square or circular beam and spherical samples would be the most 

natural geometry though to date the cylindrical sample shape has been retained for 

practical reasons: ease of making and filling sample cans. If the strongly off-axis detectors 

have spectra that cannot be corrected the beam dimensions can be changed to be more 

square, or these detectors can be left out of the analysis. So far, this seems not to be a 
significant problem. 
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4.3. THE X-RAY SCATTERING EXPERIMENT 

4.3.1 Sources 

The most commonly used X-ray generator is a system having a sealed tube with a copper 

(Cu) target (see Klug and Alexander, 1974, for detailed descriptions of conventional 

sources and measurement geometries). The characteristic K,~ X-rays generated by such a 
tube have the wavelength of 1.544 .A and a wavevector magnitude of k0 --4.069 ~-1.  

This, however, limits the range of Q to be below 8 ,~-1 since sin 0 < 1 so amax < 2k0 
(Eq. 2.2). Consequently only a few diffraction peaks can be detected by using such a 

system. Let us suppose that N diffraction peaks were recorded by the powder 

diffractometer. This translates to 2 N -  1 pieces of information since the position and 
the intensity of each peak provide 2N numbers as a data set, while the normalization of the 

intensity usually is not in the absolute scale, thus unknown. If the structure is fully 

crystalline and the number of parameters is less than 2N - 1, this set of numbers can fully 

determine the structure. However, aperiodic deviations from the periodicity cannot be 
described by such a small set of parameters, and require a larger range of Q-space over 

which the data must be measured. 

For the highest resolution and accuracy measurements the use of an X-ray synchrotron 

source is preferred as we describe below. However, perfectly acceptable low-resolution 

PDFs can be obtained in the laboratory. The range of Q-space accessible with the readily 
available sealed tubes is limited as shown in Table 4.2. Molybdenum tubes give relatively 

good flux and will yield S(Q) up to Omax of around 14-15 A-  1. This kind of source is often 

used for laboratory liquid and amorphous measurements and provides a good work-horse 

for low-resolution basic sample characterization type measurements. Silver tubes give 
Qmax of around 20-21 ~-1  which can be satisfactory (though not optimal) for PDF 

measurements even in crystalline materials at room temperature. However, the big tradeoff 

is a significant reduction in intensity, even from the low intensities of Mo tubes. This 

results in very long measurement times. Measurement times of a number of days duration 
are not unusual and adequate statistics at higher Q-values may mean measurements 

running into the range of weeks. The drop in intensity on going from Mo to Ag has two 

Table 4.2. X-ray energies, wavelengths and approximate Qmax values for common laboratory X-ray sources. 

Source E0 (keV) A (/~) Qmax (]k-l) 

Cu 8.05 1.538 8.0 
Mo 17.48 0.708 17.5 
Ag 22.16 0.559 22.0 
W 59.32 0.209 59.0 

Energies shown are the k~, l emission energies. The Qmax values are calculated assuming a maximum accessible scattering angle of 160 ~ Note the 

convenient property that the amax value in ,&- 1 is almost the same as the X-ray energy in keV. A useful resource for finding X-ray properties of elements 

is the 'X-ray data book' published by Lawrence Berkeley National Laboratory and available online at http://xdb.lbl.gov/. 
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origins. First, Ag has a lower melting point and so less power in the form of accelerated- 

electron current can be used. Second, an empirical relation gives the X-ray flux in a 
characteristic emission line according to I oc ( E -  Ec) 163 where E is the accelerating 

voltage and Ec is the energy of the characteristic emission line. Thus, for a typical source 

operating at 45 keV the ratio of intensity, 

iMo/iAg .~ ( 45 -- 16 ) 1"63 
45 - 22 -- 1.46 (4.3) 

The power, and therefore the flux, from a laboratory source can be increased by the use 

of a rotating anode source. This gives an increase in flux of approximately 5 times over an 

equivalent sealed tube source. 

A rarely used but notable exception is the tungsten (W) tube that provides the K,~ 
radiation that can cover Q-space up to 60/~-1. However, to operate such a tube an applied 

voltage of nearly 100 keV is needed. This requires a special power system since the 
conventional power system is capable of applying the voltage only up to 50 keV. 

Furthermore dealing with 100 keV X-rays is not trivial because of the high penetrability. 

Shielding requires heavy metal (lead) lining. 

Synchrotron radiation is an intense, white X-ray beam, that can be used either 'as is' as a 

white beam or, more commonly, monochromatic beam using a single-crystal 

monochromator. There are now a large number of synchrotron x-radiation sources 

operating in the world. At the time of writing the extensive list of X-ray storage tings on 

the Stanford Synchrotron Radiation Facility web-site (http://www-ssrl.slac.stanford.edu/ 

sr_sources.html) listed 75 sources either operating or under construction in 23 countries 

ranging from Armenia to the USA. A number of these are soft X-ray or ultra-violet 

beamlines that are unsuitable for PDF measurements. The sources with an electron energy 

of 2.5 GeV or greater are required for PDF work on crystals. The new 'third generation' 

sources such as the European Synchrotron Radiation Facility (ESRF) (Grenoble, France 

http//www.esrf.fr/), the Advanced Photon Source (APS) (Argonne National Laboratory, 

Illinois, USA, http//www.aps.anl.gov/) and SPRING-8 (Harima, Japan, http/www.spring8. 

or.jp/) feature high luminosity in addition to high intensity at high X-ray energies. Many 

scattering experiments which have been impossible or impractical so far are now feasible. 

Synchrotrons produce high fluxes of X-rays with tunable wavelengths. The flux of 

X-rays at different energies depends on the characteristic energy of operation of the 

synchrotron ring itself, and on details of the beamline source and optics, such as whether it 
has an insertion device such as a wiggler or undulator. A number of books and resources 

are available describing the characteristics of X-ray synchrotron sources. A brief 

introduction can be found in Woolfson (1997) as well as on the web-pages of the 

synchrotron sources themselves. A multimedia introduction has been put together by the 

ESRF called 'Synchrotron Light' that is published by Springer-Verlag (2001). Much more 
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detail is available in complete books on the subject such as Duke (2000), Mills (2001) and 

Ciocci et al. (2000), for example, in the Bibliography. 

Relatively low real-space resolution measurements with Qmax - 28/~-1 are possible 

using a bending magnet line at a second generation source such as NSLS. Higher Qmax are 

possible using an undulator line at the same source. However, best results are obtained by 

using a higher energy synchrotron such as the Cornell High Energy Synchrotron Source 

(CHESS) or one of the three new third-generation sources: ESRF, APS and Spring8. With 

these sources large fluxes of X-rays with energies of 100 keV and higher are available 

allowing Omax of > 50/~-1 to be accessed. 

4.3.2 Diffractometer 

A two-circle diffractometer is all that is required for these measurements, though typically 

beamlines are equipped with 4- or 6-circle diffractometers. The two circles are denoted 0 

and 20. This is shown schematically in Figure 4.9. They are coaxial but the 0 circle rotates 

the sample and the 20 circle the detector. As the naming scheme suggests the circles are 

linked in such a way that the detector moves at twice the rate of the sample. This is 

discussed in more detail in Section 4.3.5. A similar, though less common arrangement is 

the so-called 0 - 0  geometry. This is useful for the measurement of samples that must 

remain horizontal and cannot be tilted, in particular, liquids. In this geometry the sample 

remains stationary and the source and the detector each rotate about the sample in such a 

way as to maintain a symmetric source-sample-detector arrangement. This geometry is less 

well suited to a synchrotron source! 

Diffractometers with these geometries are commercially available. Important 

considerations are that they are carefully engineered to be precise and accurate as well 

as easy to use. They should also be strong and properly counter-balanced to allow for 

trouble free operation when special pieces of equipment are used such as detectors with 

s amp l  

I - I  

detec tor  I 

Fig. 4.9. Schematic of the 0-20 geometry angle dispersive experiment commonly used in X-ray studies. 
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liquid nitrogen dewars and sample cryostats. This is especially true at synchrotron 

sources where the scattering plane (the plane defined by the incident and scattered 

wavevectors) is vertical, heavy detectors then have to be moved in the vertical plane. 

An alternative approach to collecting data for PDF studies is to use a Debye-Scherrer 

camera. In this case the powder is placed in a capillary tube on the axis of a cylindrical 

container. Holes are cut in the container so a collimated X-ray beam can enter and exit. An 

X-ray sensitive film is then placed around the inside surface of the cylinder. They are 

described in much more detail in Klug and Alexander (1974). Historically, Debye-  

Scherrer cameras were extensively used for high-resolution measurements of d-spacings 

and lattice parameters of powders. However, X-ray film has a limited use when 

quantitative intensities of Bragg peaks are required. Intensities can be measured with the 

use of a densitometer; however, neither the dynamic range of the film nor its linearity with 

intensity is very good and diffractometer experiments were preferred. This situation is 

changed somewhat with the development of image-plate technology as we describe in the 

next section and Debye-Scherrer geometry measurements may become popular for 

quantitative measurements in due course, e.g. see Stachs et al. (2000) (Figure 4.10). 

4.3.3 X-ray detection 

The most commonly used detector is a scintillation detector. However, this type of detector 

is less ideal for the most accurate PDF measurements, especially when higher energy 

X-rays are used. The reason is that the energy resolution of a scintillation detector is very 

poor, only about 20-30%, and it cannot efficiently discriminate artifacts such as 

fluorescence and Compton scattered intensities. The advantage is the ease of use and low 

cost as well as the good characteristics of high count-rates and good linearity. In this kind of 

detector absorbed X-ray photons cause a scintillator material such as Pt doped NaI to 

radiate visible light. In the early days of X-ray detection the light flashes were observed by 

eye in a dark room. These days photomultiplier tubes are used to convert the light pulse to a 

charge pulse and to amplify it and have completely replaced graduate students as X-ray 

detectors. Check the resources listed in the section seclected bibliography for more 
information. 

A preferred detector is a single-element or multi-element solid state detector (SSD) 

(Figure 4.11). The main component of an SSD is a highly pure intrinsic semiconductor (Si 

or Ge) single crystal. A bias voltage (1000-1500 keV) is applied to the crystal. The 

crystals are cooled (Ge crystals must be cooled to cryogenic temperatures) to minimize 

dark current. Ge crystals are preferred for higher energy X-rays because of higher detection 

efficiency due to the more absorbing, higher atomic number, of Ge. 

An X-ray photon impinging on the detector will produce a number of hole-electron 

pairs (formation energy ---3 eV), which produce a pulse of current because of the bias 

voltage. The charge pulse is electronically amplified and shaped to produce a clean 
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Figure 4.10. (a) Image-Plate Debye-Scherrer camera suitable for PDF studies. (b) Example of data collected 
from powdered nickel in 15 s at beamline ID1 at the APS using the camera. 

Gaussian (or some other choice of) line-shape. This can be converted into a computer- 

readable count in two ways. The pulse height can be gated so that only pulses whose peak 

voltage fall within a predetermined range are accepted. The successful pulses are then fed 

into an analogue-digital converter to produce an electronic (e.g. TTL) signal which is 

counted in a scaler. The analog signal from the amplifier can be daisy chained to a series of 

single-channel analyzers (SCAs) with different gate voltage settings to measure different 

phenomena such as the elastic signal, fluorescences and so on. The alternative approach is 

to use a multi-channel analyzer (MCA) which samples the peak and assigns a count to a 

particular channel (or bin) depending on the peak height. Modem MCAs are just computer 
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Figure 4.11. Photograph of a multi-element solid-state Germanium detector. This image shows a 13-element 
detector. A 100 element Ge detector is in use at the Photon Factory synchrotron source in Japan. 

cards that plug into the bus of the experiment control computer. After a period of counting, 

the MCA spectrum can be output and plotted. Typically 1024 channels are used. This gives 

a histogram of peak heights resulting in a quasicontinous spectrum of intensity vs. channel 

number. The number of e - h  pairs created in the semiconductor crystal, and therefore the 

integrated charge in the pulse, is proportional to the energy of the X-ray. Thus, the peak 

height, and therefore the channel number, gives the energy of the detected X-ray. The 

spectrum in the MCA is therefore a plot of intensity vs. X-ray energy. An example of an 

MCA spectrum is shown in Figure 4.12. The main advantage of the SSD is the low noise, 

relatively good energy resolution (cc E, --~230eV at 20 keV), and high efficiency. 

Disadvantages are the relatively high cost and long pulse shaping time and thus a 

substantial dead time (--- 14 Ixs) which limits the counting rate. Fully digital electronics 

that are more efficient are now becoming available that make the dead time shorter and 
allow higher counting rates. 

A linear detector (position-sensitive detector, PSD) is also useful in increasing the total 

count rate by parallel detection. Various forms of metal wire gas detectors (proportional 

counters) and semiconductor Si-diode array detectors are already available. Both have a 

relatively low energy resolution (20-30%), and high background noise. Also the 

normalization of the sensitivity of the wire detector is a non-trivial problem for quantitative 

measurements. The detection efficiency of a Si-diode detector drops quickly at high 

energies, and above 20 keV X-ray energies they are practically transparent. Thus they are 

rather unsuited for the high-Q measurements discussed here. 
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Fig. 4.12. MCA spectrum from a Ge detector. The data are diffraction data from a sample of Inl-xGax As 
collected at an X-ray energy of 60 keV. The sharp line centered at channel number --640 comes from the 

elastically scattered X-rays. The broader line next to it is the inelastic Compton modified scattering. 
Peaks at lower channel numbers are fluorescence and escape peaks. 

Two-dimensional detection can also be used to increase detector solid angle coverage 

and speed up measurements. One approach is to line up PSD wires in a grid. These 

detectors have the same problems as the 1-D proportional counters discussed above. Two- 

dimensional charge-coupled-device (CCD) X-ray detectors are also beginning to be used 

in diffraction measurements. At present these are flat, relatively small in area and 

expensive making it a less desirable technology for wide angle measurements. Since they 

are charge integrating devices they have no energy resolution and simply record the 

number of events in a pixel. An alternative is to use image-plate (IP) technology. These 

devices are the modern equivalent of X-ray film. As with CCDs (and X-ray film) they 

integrate the incident intensity. Unlike X-ray film they can be read out digitally using a 

rastered laser and then photobleached with bright light 'resetting' them for reuse. The IP 

material is mounted on flexible bases allowing it to be cut and bent into different shapes. It 

is available in fairly large sheets, the size ultimately being limited by the size that can be 

handled by the laser readout device. An inconvenience is that the IP has to be removed to 

be read making it difficult to automate when multiple data-sets are to be collected. IP 

cameras are becoming available which have the readout laser and bleaching lamp mounted 

on the camera allowing the IP to be read-out in situ, though at the time of writing none 

suitable for PDF work is available. IP' s have the advantage that they are very linear over a 

wide dynamic range making them suitable for PDFs from crystalline materials where both 

highly intense Bragg peaks and the weak diffuse scattering underneath the Bragg peaks 

must both be measured quantitatively. An example of an IP camera suitable for PDF work 

is shown in Figure 4.10 (Stachs et al., 2000). 

For a large array of digital detectors, reading out a massive amount of data is a major 

problem. Advances in computer and communication technologies are making such fast 
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read-out possible. Another issue common to 2-D detection devices is to calibrate the point- 

to-point sensitivity. Also, since these technologies are currently under development there 

is no established software to calibrate position, correct for pixel solid angle and integrate 

the intensities around the Debye-Scherrer rings. Because of the obvious advantages of 

area detectors in flux limited wide angle experiments such as PDF experiments these 

problems will undoubtedly be addressed in the future. 

The whole experiment is controlled by a computer which moves the diffractometer 

arms, starts and stops data collection and resets the MCA at each data-point. A commonly 

used diffractometer software at synchrotron sources is SPEC that was developed originally 

at Harvard University but is now developed, distributed and supported commercially by 

Certified Scientific. 

4.3.4 Beam monitor 

In addition to the measurement detector, it is necessary to have an accurate and stable beam 

monitor. Ion chambers placed in the direct beam can be used. Scintillation detectors placed 

perpendicular to the beam in front of the sample are also often used. These are often placed 

so that the detector aperture sees scattering at 90 ~ from an angled kapton tape (but in the 

same scattering plane as defined by the incident beam-sample-detector relationship). The 

scattering from the tape is fairly incoherent at 90 ~ and this scattered intensity is a good 

measure of the average beam intensity. In high flux, high energy, experiments at CHESS 

the scattering from air has been used with no kapton tape in place. Scintillator detectors 

have the advantage that they have some, albeit poor, energy resolution. This means that 

higher harmonics can be excluded. On the downside, the count-rates possible, in the 

region where these devices are linear and do not have excessive deadtime, are limited to a 

few times 10 4 per second. This limits the statistics of the measurement since random 

fluctuations from the monitor contribute to the total errors. In contrast ion chambers can 

count reliably at rates --~ 106 per second with little deadtime. The monitor must be stable. 

Ion chambers are stable if the gas flow through them is slow and constant. If the pressure in 

the ion chamber fluctuates too much, this can affect stability. Scintillators are relatively 

stable, but can suffer from effects such as variations in density or thickness of the Kapton 

tape. This can be a problem if the X-ray beam position shifts, a phenomenon which is not 

uncommon with synchrotron sources. This effect is not a problem if the scintillator is 

looking at air scattering alone. Ion chambers have no energy resolution and so may be 

susceptible to harmonic contamination. This is a problem if the harmonic component of the 

beam changes with time that can sometimes be the case. The harmonic component of the 

beam is reduced if the monochromator is detuned so that the primary and secondary 

monochromator crystals are not perfectly parallel. This loses intensity from the 

fundamental, but the intensity of the harmonics fall off more quickly with detuning so, 

as a percentage of the total flux, the harmonic component is reduced. If this approach is 
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used it is necessary to maintain stability, usually using a piezo feedback system which 

maintains the detuning at a specific value. Harmonic contamination can also be removed 

by using an X-ray mirror in the beam optics. However, this tends also to remove the high 

energy portion of the incident beam which is not reflected by the mirror. Mirrors are 

therefore not used in high energy measurements. Harmonics are discriminated away in the 

detected beam, but their possible presence in the monitor means that a time-dependent 

harmonic content will lead to Q-dependent normalization errors. When the incident 

intensity is high, harmonics also increase the deadtime in the detector and the electronics. 

They deposit so much charge into the Ge detector. They can also lead to space charging 

problems and an inability to sweep all of the charge out of the Ge crystal quickly enough. If 

another photon arrives, it will not have the correct charge in its pulse and will be binned 

incorrectly in the MCA. Thus space-charging effects appear as background noise in the 

MCA spectrum and can be quite bothersome. Thus, in practice, taking steps to limit the 

harmonic component of the beam is generally advised. 

4.3.5 Measurement geometry 

Different powder diffractometer geometries are discussed in more detail in Klug and 

Alexander (1974). Here we compare and contrast different geometries in the context of 

PDF measurements at different sources. 
Sealed tube and rotating anode laboratory sources are highly divergent. Large increases 

in scattering intensity can be gained by using a parafocussing Bragg-Brentano geometry 

(Figure 4.13), although the gains are greatest at the lower diffraction angles which yield 

Figure 4.13. Schematic of the Bragg-Brentano flat plate symmetric reflection geometry that is widely used on 
divergent sources (i.e. laboratory sources) and for opaque samples. 
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Figure 4.14. Schematic of the flat plate symmetric transmission geometry that is most useful for high energy 
synchrotron total scattering studies. 

low-Q information that is less critical for PDF studies. This is a flat-plate symmetric 

(0-20) reflection geometry. Except when parallel detection schemes (wire or blade PSDs 

or IP cameras for example) are used, in which case a cylindrically symmetric geometry is 

more natural, Bragg-Brentano geometry is widely used with laboratory sources. Flat plate 

symmetric transmission geometry may also be used for accurate quantitative intensity 

measurements (Figure 4.14). Flat plate geometries have the advantage that a fairly large 

quantity of sample is in the beam compared with a capillary geometry (Figure 4.15). It is 

also easier to support the sample without a large amount of parasitic scattering from the 

sample holder. Finally, absorption corrections are easy with straightforward analytic 

expressions describing the sample absorption at all angles (Appendix 5.2). The choice 

between reflection and transmission geometry depends on the transparency of the sample. 

Figure 4.15. Schematic of capillary (Debye-Scherrer) geometry. 
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As well as the parafocussing property, reflection geometry has the benefit that the 

absorption and sample active volume corrections are somewhat self correcting (they are 
fully self correcting if the sample is infinitely thick, or completely absorbing). These latter 
advantages mean that it is sometimes also used at synchrotron sources even though the 
parallel incident beam renders parafocussing of no value. 

If the sample is significantly transparent, which is often the case when high-energy 
X-rays are used, then transmission geometry generally gives stronger scattering, especially 
at high angles where the beam footprint is largest in transmission geometry. Since good 

intensity at high angles is the most important consideration this geometry is most often 
used for high energy scattering at synchrotrons. This geometry is also more robust than 

reflection geometry against alignment errors, especially at low angles. 
When samples are made they should have very uniform thickness and no holes. The 

thickness can be varied but it is optimal in transmission geometry if it has an absorption 
coefficient, /xt, of --~0.5 at the X-ray energy of the experiment. Low atomic number 

samples would have to be centimeters thick to fulfill this criterion at 60 keV X-ray energy, 
in which case the sample thickness should be limited by other considerations such as the 
resolution and physical geometry of the experiment. In general, sample thicknesses greater 
than 5 mm or so are avoided in transmission measurements. 

Care must be taken that the beam footprint does not extend over the edge of the sample 
surface area at the extremes of angle (Figures 4.13 and 4.14). The problem is particularly 
acute at low angles in reflection mode. This will result in an angle dependent drop off in the 
intensity of the sample which is difficult to correct. One approach is to use transmission 

geometry at low angles and reflection geometry at high angles. This means that the data 
have to be properly matched where they overlap, which can be successfully done if proper 

absorption and active volume (sometimes called gauge volume) corrections are carried 
out, respectively, on each set of data. Another approach is simply to ignore the problem at 
low angle. The data are then corrupted, but only in the very low-Q region which does not 

contribute significantly to the Fourier transform. Of course, in the most accurate 
measurements this is to be avoided. This problem does not exist when data are collected 
entirely in symmetric transmission geometry, again making this a preferred geometry for 
synchrotron work. 

When making the flat plate samples the most important consideration is that they 
be of uniform thickness and density with no macroscopic holes or cracks. The surface 
should also be as fiat and smooth as possible (both surfaces if it is a transmission 

sample). As with any powder samples the particle size should be small (<  40 Ixm) and 

uniform. This is usually accomplished by sieving the sample through a 400 mesh 
sieve. It is particularly important to avoid texture, preferential powder orientation, in 
the sample. This is generally easier when the particle size is smaller, but can still be a 

problem if the powder grains have a particularly oblate or prolate morphology. 
Powders are often supported with thin kapton tape over the surface (Figure 4.16). 



128 Underneath the Bragg Peaks 

Figure 4.16. Photograph of a flat-plate transmission sample supported between kapton foils. 

This is particularly important if the sample is to be cooled in a vacuum. Uncovered 

powders rarely survive the pump down as air trapped between the grains forces its 

way out. Differential thermal contraction between the sample holder and the powder 

itself can also loosen a tightly packed powder. The kapton gives rise to parasitic 

scattering which can be significant at low angle, but is relatively easy to remove by 
measuring the background scattered intensity from an empty holder supporting a 

kapton tape. The background scattering should be corrected for relevant sample 

absorption effects before being subtracted from the data as discussed in Chapter 5. A 

small amount of grease, or DUCO cement mixed with acetone, can also be mixed 

with a loose powder to stabilize it if the sample does not have to be recovered in its 
pristine state after the experiment. The scattering from the stabilizing agent is 

relatively weak. Traditional techniques of supporting a thin film of powder on a glass 

slide, widely used, for example, in sample characterization and d-spacing 

measurements, are unlikely to result in thick or uniform enough samples for the 
short wavelength X-rays needed for PDF measurements. 

A number of factors affect the slit openings of the exit slits before the sample and the 

receiving slits before the detector. The X-ray measurements are generally higher resolution 

than neutron measurements. In PDF measurements it is therefore possible to compromise 
the resolution to obtain higher intensities by working with a relatively large beam height 

(defined by the exit slit opening) and receiving slit opening. Values of 1 -2  mm are typical 

for in-house setups and 0.5-1 mm at synchrotron sources. In the latter case larger beam 



Total Scattering Experiments 129 

sizes would be preferred but are limited by the natural beam height. In this case slits are still 

used to physically define the beam and to try and select a more uniform beam profile and 

polarization from the center of the beam. For ease of data analysis it is often the case that 
data are collected in steps of constant AQ, though steps of constant A20 can also be used. 

The step size depends on the resolution of the measurement. It is important to collect 

enough points that the step size is always smaller than the instrument resolution so all of 

Q-space is probed. The resolution varies with Q. It is set by a variety of factors such as 
sample size and beam divergence, but in a synchrotron experiment the beam-height is an 

important factor. The uncertainty in the scattering angle, A20 --~ h]L 2 where h is the height 

of the beam and L 2  is the length of the secondary flight path from the sample to the receiving 
slit. Since Q = 4-rr sin 0/A, the resolution in Q due to the finite beam size is given by 

--~-- )COS( ~ ( 0 (4.4) 

This equation reflects the fact that the resolution gets better at high angle, a widely 
known result. 3 In principle, to maintain a constant resolution, the receiving slit width should 

be increased with angle. This has the added benefit of increasing statistics in the important 

high-Q region. However, this is seldom done in practice because of the difficulty of 

normalizing data correctly when the receiving slit width is changed in the middle of a 

measurement, as well as the obvious additional complexity of the measurement. 
One thing to make sure of is that none of reciprocal space is missed in the measurement. 

Obviously this means that the angular step-size, 620, must be less than A20 or h/L2. If the 
measurement is carried out in steps of constant 20 this is easily accomplished. However, if 

the measurement is carried out in steps of constant 6Q then some care must be exercised 
because the step size, 620, will change with angle. From Eq. 4.4, we get 

6Q<AOmin-(2"rrh)cosOmax (4.5) 

Higher resolution measurements with smaller receiving slits and smaller step-sizes are 

rarely warranted in the case of X-rays since the Fourier transform controls the frequency at 

which the data are sampled. Higher Q-space resolution results in PDFs extending to 

higher-r which is almost never the limiting factor in a measurement. 

Good collimation after the sample is desirable to minimize background from air 

scattering and sample environments such as heat shields and windows in vacuum shrouds. 

This is often accomplished with a set of slits positioned fairly close to the sample 

(sometimes known as scattering slits, see Figures 4.13 and 4.14). However, care must be 

taken to ensure that the sample is well aligned in the center of the diffractometer circle so 

that at no time in the measurement is the sample shadowed by the scattering slits. This is 

3 This is also true in time-of-flight neutron measurements where the backscattering detectors have much higher 
resolution than the low angle detectors. 
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particularly relevant in a PDF measurement where data are collected over such a wide 
range of scattering angles (typically 0.5 ~ < 20 < 135~ This shadowing is disastrous since 

it introduces an unknown Q-dependent modulation in the measured intensity which makes 

the data virtually impossible to correct. The primary role of this collimation is to eliminate 

parasitic scattering rather than to increase resolution by limiting divergence so there is no 

particular advantage in using Soller slits. 

In a high energy measurement there can be a great deal of penetrating stray scattering in 
the experiment hutch during the measurement. It is important to minimize the effect of this 

on the measurement itself. This is done by limiting the amount of stray scattering by 

shielding the beam and covering beam-line components which cause scattered radiation 

(slits for example) with lead. Finally, the detectors must be well shielded with lead to avoid 
X-rays entering the detector from another direction than the sample position. The usual 

construction of commercial semiconductor detectors is to mount the crystal in an 

aluminum housing that is woefully inadequate for keeping at bay 60 keV X-rays. 

4.3.6 Instrument alignment 

By way of example for those unfamiliar with instrument alignment, we give below, a 

typical set of steps taken to align the diffractometer before beginning measurements. We 

are assuming a fiat plate transmission measurement at a synchrotron source. However, 

many of the principles are common to other geometries and sources. 

1. Ensure the sample is at the mechanical center o f  the diffractometer. This is usually 

done by centering a pin at the sample position. The pin is viewed through a cross-hair 

telescope whilst being rotated. The sample mount is then translated in two directions 

perpendicular to the beam direction until no parallax is observed. If a low-temperature 

stage is being used this must be done with the cold-stage in place. 

2. Select beam energy and optimize the intensity at this energy. Monochromators at 

modem synchrotron sources tend to be two-crystal double bounce geometry. A 
number of alignments are necessary including vertical and horizontal offset, as well as 

a lateral and longitudinal rotations. These all affect beam position, uniformity and 

intensity. Upstream slits are generally set at this point, for example, the slits before and 

after the monochromator. These slits do not define the beam and so should not be set 

too tightly. Make sure the hottest part of the beam is not being cut and that the beam 
intensity profile is approximately symmetric. Other upstream beam conditioning 

optics should also be set and aligned such as monochromator focusing and harmonic 

rejection mirrors, although these are rarely used at the energies of interest for PDF 

measurements. These alignments are often carried out by beamline staff. 

3. Center the beam on the pin at the center of  the diffractometer. At a synchrotron the 
diffractometer table has to be translated up and down to do this. The pin from step 1 is 

used and checked to see that it shadows the beam. 
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4. Set the exit slits (last slits before the sample) to the desired opening and center them on 

the beam and the pin. These slits should be independent of the diffractometer. These 

slits define the beam height and the beam position. After alignment they should not be 

moved (or bumped!). 

5. I f  it is not known, measure the detector dead times, ~'. This is best done with a series of 

calibrated foils of known material and (uniform) thickness. These are systematically 

placed in front of the detector and the count rate (normalized by the monitor) recorded 

for each successive foil added. The data are fitted to the equation for detector deadtime 

I = Io/(1 +/totZ). Detector dead time can also be estimated dynamically during the 

experiment with the use of an electronic pulser, or using the MCA 'live time/real-time' 

ratio, as we describe later. 

6. Set the receiving slits. These slits sit fight in front of the detector. They should be set to 

the desired opening (see the discussion in Section 4.3.5) and centered on the detector, 

as close as possible to the axis of the 20 diffractometer arm. 

7. Find the 20 -- 0 position. Avoid destroying the detector by putting direct beam into it 

when doing this alignment! The object is to find the nominal angle when the direct 

beam is in the center of the detector receiving slit. This is done by measuring the direct 

beam profile by scanning the receiving slit, with an ion chamber detector behind it, or 

the solid state detector with a lot of attenuation in the beam, through the direct beam. 

Another useful setup is a silicon photodiode mounted on a strongly absorbing plate, 

such as hevimet, that can tolerate the intense direct beam and can be placed in front of 

the detector. The beam profile should be symmetric (if the beam is well aligned) and 

the center of the peak is the 20 = 0 position. It is worthwhile after finding the 20 = 0 

position and setting the diffractometer software to zero 20 at this position, to record the 

physical angles from the diffractometer circles and motors. In this way the integrity of 

the 20-zero can be easily checked at various times during or after the measurement 

without having to remeasure it. This is sometimes useful to reassure oneself that none 

of the circle motors has slipped or missed steps at any time. 

8. Remove the aligning pin and install the sample on the diffractometer. The sample 

position must be reliable and reproducibly close to the position of the pin. This is 

usually done by carefully machining the sample mount to ensure the center of 

diffraction of the sample is at the same position as the pin. In a transmission sample 

this will be the center of the sample. In a reflection sample it will depend on the 

thickness and penetrability of the sample (and on the scattering angle) but is likely to 

be somewhere between the center of the sample and the front face. This complication 

means that it is unwise to make a reflection sample more than a few mm thick at most, 

even if this means that the sample has a finite transparency. 

9. Measure txt o f  the sample. The easiest way is with the sample perpendicular to the 

beam measure the direct beam intensity (normalized by the monitor) with and without 

the sample in place. Another approach is to rotate the flat plate sample through +__ 60 ~ 
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while recording the intensity (remember, do not put direct beam into a sensitive 

detector). The resulting intensity will have the form ln ( I / lo )=- /x t /cos  0, thus 

plotting ln(I/Io) vs. sec 0 will give you a straight line of slope - /z t .  

10. Set the scatter slits. These are the slits that sit immediately after the sample. Find a 

strong Bragg peak from the sample. Bring in each blade of the slits separately until the 

intensity falls to zero. Record these positions which define the edges of the scattered 

beam. Set the scatter slits as close as you dare (but not too close) to the beam edges. 

Check the slits by studying a few Bragg peaks (or other features which give significant 

scattering) at widely separated scattering angles. If the sample is well aligned the beam 

edges should be in the same positions independent of angle. Make sure the scatter slits 

are set so that the scattered beam is never cut by a slit. A wise experimenter errs on the 
safe side here. 

11. Check the sample powder averaging. Measure a rocking curve at one or two Bragg- 

peak positions. With the detector fixed at the 20 of a Bragg peak, rock the sample 

(0 angle) back and forth through a few degrees recording the intensity. In general, the 
sample will have to be rocked to ensure good powder averaging. The intensity should 

be more or less constant (after normalizing for incident flux) and not fluctuate too 

greatly. This problem is especially acute at synchrotron sources where beam footprints 
can be very small. 

12. Set the 0 = 0 position. In this position the sample is parallel (perpendicular) to the 

beam in reflection (transmission). The 0 = 0 is set with the sample parallel to the beam 

and the detector at the 20 = 0 position (again, care must be taken not to destroy the 

detector with the direct beam). In this position the sample will shadow approximately 

half the beam. If the sample is rotated in either direction by a small angle the sample 

will completely shadow the beam. By scanning the 0 angle through zero with the 

detector held at 20 = 0, a symmetric minimum should be apparent in the intensity. 

This alignment is not crucial in a powder measurement and is often done by eye or 
with the help of a spirit level. 

4.3.7 Dedicated and optimized synchrotron beamlines 
At the time of writing no dedicated or optimized beamlines for high energy total scattering 

powder diffraction measurements exist at synchrotron sources. In contrast to neutron 

sources the general philosophy, especially in the US, seems to be to build relatively 

flexible, unspecialized diffraction instruments. This makes setup and alignment relatively 

arduous for these somewhat unconventional measurements. This is changing with time as 

the utility of total scattering measurements becomes more widely recognized, and a 

number of high energy powder/total scattering beamlines are being planned (e.g. BM6 at 

the APS). It is expected that instrument setup and alignment will be significantly facilitated 

at these beamlines making these measurements much more routine. 
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Chapter 5 
Data Collection and Analysis 

5.1. INTRODUCTION 

The raw data collected in a diffraction experiment take the form of photon or neutron 

counts vs. some variable, such as diffraction angle, energy, time of flight (tof) and so on, 

which will be converted to a Q value. The purpose of the diffraction experiment, however, 

is to determine the normalized total scattering structure function S(Q) as we have 

discussed. The data have to be collected and processed so that they yield the structure 

function with high accuracy. Also the experimental setup has to be designed to make the 

data analysis easier and more accurate. Here we spend some time on the strategy of data 
collection and analysis. 

The measured intensity of scattered neutrons or X-rays contain, in addition to scattering 

from the sample, scattering from the addenda such as the sample holder and experimental 

apparatus. The first order job is to remove all the photon or neutron counts due to scattering 

from the addenda. Thus, we have to perform scattering measurements without the sample 

in place to account for instrumental backgrounds. Note, however, when the sample is 

present a part of the scattering from the addenda is modified due to sample absorption. This 

complicates the process. In addition some photons or neutrons are scattered twice or more 

times in the sample and elsewhere in the apparatus before reaching the detector. This 

multiple-scattering intensity has to be evaluated. The scattered intensity has to be 

normalized with respect to the intensity or spectrum of the incoming beam. Then the 

scattered beam intensity has to be corrected for polarization effects, sample absorption, and 

normalized with respect to the number of atoms in the sample. The properly normalized 

structure function is obtained only after these laborious steps. Any imperfection in the 
corrections procedure will affect the outcome. 

There are two pieces of good news in this regard. First, most of the corrections are pretty 

well understood and can be reliably estimated. The second piece of good news is that the 

structural information in the PDF is fairly robust with respect to analysis errors. The reason 

is that most data-corrections give rise to data-modulations that are much more slowly 

varying with Q than the experimental signal itself. The net result of this is that 

imperfections in the data correction procedure have a large effect on the very low-r region 

of the PDF since long wavelength features in S(Q) give rise to sharp features in G(r) at 

low-r. This is the region below the nearest-neighbor distance where there is no physical 

information about the structure. Whilst accurate data-corrections are clearly important, the 

physical information in the PDF is somewhat robust to imperfect corrections. Having 

said this, spurious information from this low-r portion of the PDF can propagate into 
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the physical region of the data and one should be guarded against over-interpreting small, 

individual, features, especially in the low-r region of the PDF. In contrast to other local 
structural techniques such as XAFS, the quality of the data does not diminish with 

increasing r. By fitting models over a range of r to get the structural information it is 

unlikely that experimental artifacts will be wrongly interpreted. 
In this chapter we discuss in detail the equations and procedures used to correct the data 

to obtain S(Q) and subsequently G(r). We develop the equations for the data analysis using 
the language of differential cross-sections. This formalism will be much more familiar to 

neutron scatterers than X-ray scatterers; however, as defined it is completely universal. It is 

also a very intuitive way to describe the real physical measurement and, for those 

unfamiliar with the slightly mathematical looking formalism, a few moments spent 

understanding the definition (Section A5.1.1 of Appendix 5.1) in detail will pay back 

handsomely. The desired structure function, S(Q), depends on the coherent single 

scattering sample cross-section, (do-S/dO), from Eq. 2.9: 

S(Q) = ~ - ~  q- (b)2 . (5.1) 

In Section 5.2 we give general equations for (do-S/dl2) in terms of the measured 

intensities from sample and background data-sets. These equations are derived in an 

intuitive step-by-step fashion in Appendix 5.1. In Section 5.3 we discuss specific 

corrections for X-ray and time-of-flight neutron data and present the equations that are 

relevant for these specific cases. In Section 5.4 some aspects of real-world data-analysis, 

including where to get data analysis programs, are laid out. 

5.2. DATA ANALYSIS OVERVIEW 

In this section, we give the most general equations that are necessary to reduce raw data to 

the total scattering structure function S(Q). As per Eq. 5.1, this requires determining 
(do-S/d~Q) from the experimentally measured intensities. The equations given here are 

systematically defined in Appendix 5.1. The derivation is involved and can be skipped on a 
first reading. However, we believe that glancing over the derivation steps reveals 

considerable insight into the philosophy of the data corrections and is well worth the effort. 

The problem is set up initially in the most general terms possible by dividing the sample 

into microscopic volume elements and considering the scattering from each element in 

turn. There is more than one approach that can be taken to obtain S(Q) from the raw data. 

Also, exactly which equations are used to make specific corrections depends on 

the geometry of the particular measurement. By developing the problem in general terms 
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first we hope that it becomes clear to the reader exactly what the problems are facing 
the data analyst. For convenience the resulting equations are reproduced below from 
Appendix 5.1. 

In general, to obtain a reliable S(Q) three measurements need to be made: sample in a 
can in its sample environment, empty can in the sample environment, empty environment 
(sometimes called background). The letters s, c and a are used to denote the presence of 
sample, container and sample environment (or apparatus), respectively, in the 
measurement. In these three experiments the integrated counts in the detector, N, 
normalized by the monitor counts, M, are given by Eqs. A5.1.23-A5.1.25 

( N )  sea 
-- d ~  dE s ged{p s;sca -+-pC;SCa + pa;sca + mSCa} (5.2) 

( N )  ca {pC;Capa;CamCa 
-- dO dE s Ked + + } (5.3) 

(~)a = dg2 dEs ged{p a;a + m a } (5.4) 

where all the symbols are defined in Appendix 5.1. Here the single scattering contributions 
are given by Eq. A5.1.18, 

/ d ~  dEs oYD h A x d7 (5.5) 
Y x } 

and m ~yz are the multiple scattering terms defined in Appendix 5.1. Making certain 
approximations these equations can be combined and rearranged to yield Eq. A5.1.36 

1 ) m 
dO dE s M Vtc;ca M pSVts;scaDd,.(2 dE s K/3 d 

for the sample double differential cross-section (Appendix 5.1) where ~)~c ~)~ca ~a (~ (~-(~) 
and N)c_ N)ca_ N)a 
From here it is a straightforward integration over the energy window of the measurement, 
W(E), to obtain an expression for the desired single scattering cross-section in terms of the 
measured counts (Eq. A5.1.37), 

--d~) -- ~ d ~  dE s W(Es)dEs (5.7) 
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[ N sc (Vcsca) N c]( 1 
-- ~ Vtc;ca M p S W t s ; s c a O  

! 
dOKea  - m 

(5.8) 

In this equation the V~.{w } terms give the absorption weighted 'effective scattering 

volume' of the sample. They are discussed further in Section 5.3.6 and defined in detail in 

Appendix 5.1. They can be evaluated numerically knowing the linear absorption 

coefficients, /.~(E), of the sample, container and apparatus. For some simple geometries 

such as fiat-plate transmission and reflection, there are analytic expressions which are 

derived in Appendix 5.2. 
Within the assumptions we have made, this equation for (do-S/dO) is quite general. We 

have not assumed any particular origin for the double differential cross-section. We have 

not presumed that the scattering is elastic or inelastic or coherent or incoherent, nor have 

we stipulated that the measurement be made at constant wavelength, or in a particular 

geometry. We have not even specified that the scatterers be X-rays or neutrons. Eq. 5.8 is 

valid provided the scattering is weak, that the experimental apparatus other than the sample 

container is sufficiently far from the sample, that each component of the experimental 

apparatus, and the sample, are homogeneous and that we can evaluate the multiple 

scattering contributions adequately. Clearly, an accurate determination of the sample 

cross-section also implies that we can evaluate the integrals V ~ f /, accurately and that we 
' y ; i w l  . . . .  

know, or can measure, our sample density, detector solid angle and detector emclencles. 

These issues will be dealt with below. 
Finally, as we discussed at the beginning of the chapter, S(Q) is obtained from (do-S/dO) 

according to Eq. 5.1. 

5.3. OBTAINING S(Q) IN PRACTICE 

We will now discuss how to obtain the total scattering structure function, S(Q), in practice 

in two specific cases: angle dispersive X-ray diffraction and time-of-flight neutron 

diffraction. It is possible to obtain good PDFs from reactor neutron sources using a constant 

wavelength angular dispersive mode as well, although except when using a very hot 

moderator the Q range is very limited. In this case the data corrections are much closer to 

those used for X-ray analysis than the time of flight data collections, the main difference 

being that the form-factor is Q-independent and there are no polarization corrections to be 

carried out. These corrections are not explicitly discussed here. 

Up to now we have defined the sample cross-section in a very general way. We did not 

say that it was only coherent scattering nor did we even specify the scattering mechanism. 

The cross-section was simply the probability that a particle is scattered by a given volume 
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element in a given direction, by any process. In this Section we will explore this in more 

detail taking the case of X-ray and neutron scattering separately. Before we do this we will 

summarize some of the terminology. 

5.3.1 Elastic, inelastic, coherent and incoherent scattering 

All scattering can be characterized using two important concepts into four distinct 

categories. The two concepts are whether the scattering was elastic or inelastic and 

whether it was coherent or incoherent. These terms are often used imprecisely leading to 

confusion. This is particularly apparent when a person with a neutron scattering 

background talks to a person with an X-ray scattering background where the concept of 

inelastic scattering generally has a very different meaning. We discuss this further here. 

First we define the terms; the easier to define first. In an elastic scattering event there is no 

exchange of energy between the scattering particle and the system it is scattering off (the 

sample). Conversely, in an inelastic scattering event there is an exchange of energy. The 

coherence of the scattering refers to whether there is a definite phase relationship between 

scattered waves allowing them to interfere constructively and destructively. In the case of 

coherent scattering, the waves interfere and the resulting intensity is given by the square of 

the sum of the wave amplitudes. For example, if there are two scattered waves of amplitude 

~Pl and ~P2, then I -  I~Pl + ~P2 [2. In the case of incoherent scattering there is no definite 
phase relationship between the waves, they do not interfere, and the resulting intensity is 

simply the sum of the intensities of the individual waves themselves, i.e. I -- I~Pl [2 + i~P212. 

Since structural information in the scattering comes from the interference effects of 

scattered waves it is clear that only coherent scattering contains any structural information. 

There are many different scattering processes that occur in materials, but all scattering 

processes can be categorized as being coherent or incoherent and elastic or inelastic. To 

illustrate this, we mention some types of scattering and categorize them. We will discuss 

this more below in the Sections 5.3.7 and 5.3.8. Bragg scattering is elastic and coherent. 

Laue monotonic diffuse scattering (coming from the mixture or different chemical species 

in a sample) is elastic and incoherent. The incoherent cross-section of the nuclear 

scattering, coming from the different isotopes and spin-states of nuclei in a sample, is 

elastic and incoherent (in some sense it is the same as Laue monotonic scattering). Thermal 

diffuse scattering is inelastic and coherent. Compton scattering is inelastic and incoherent. 

Neutron (and X-ray) scattering from phonons and magnons is inelastic and coherent 

(actually the same origin as thermal diffuse scattering). All the coherent scattering, elastic 

(e.g. Bragg) and inelastic (e.g. TDS), becomes incoherent at high enough values of Q due 

to Debye-Waller  effects. We will use these concepts more below. 

In Section 5.3.2 we discuss methods for obtaining 'quick and dirty' S(Q) values for real- 

time data processing and characterization. In subsequent subsections we discuss in more 

detail the various corrections that are carried out for X-ray and neutron tof measurements. 
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The discussion is laid out more-or-less in the order in which the corrections are applied in 

practice. Finally, equations for (do-S/d~Q) specific to the particular cases of X-ray and tof 
neutron are given in Eqs. 5.19 and 5.27, respectively. 

5.3.2 Quick S(Q) 

Whilst modern computers and data analysis programs allow data to be processed very 

quickly the time pressures of working at a 24 h a day X-ray or neutron facility often are not 

compatible with making a careful analysis in real-time during data collection. In this case it 

is convenient to be able to calculate quickly a rough, but representative, S(Q). This is 

straightforward in the case of X-rays, especially when Compton scattering is being 

discriminated in the measurement. Data must be corrected for detector deadtime and 

divided by the beam monitor. At this point the data can be aggressively smoothed (for 

example, a box-car smooth with a box-car of a few hundred points in length). This heavily 

smoothed data will then be used as (f2(Q)) and divided into the unsmoothed data. This 

results in a function that resembles S(Q), though is not quantitatively accurate because the 

low-Q portion of the data are not properly scaled (the smoothing process works better at 

high-Q where the features in the scattering are less pronounced). It is especially good for 

assessing whether significant diffuse scattering is present at high-Q and checking the 

statistics of the data in this region. This is shown in Figure 5.1 where data from CHESS are 

shown as measured intensities and as Q(S(Q) - 1) evaluated in the above way. For now 

what is apparent is oscillating diffuse scattering at high-Q that is easily seen in Q(S(Q) - 1) 
but is not clearly visible in the as-measured data even when plotted on an expanded scale 
(inset to Figure 5.1). 

In the case of neutrons there is no Q-dependent form-factor but the incident source 

spectrum must be accounted for. The quantity actually measured in the experiment is the 

number of counts in a particular time-of-flight channel in a detector or detector pixel. For 

simplicity we can simply neglect the contribution of unwanted parasitic scattering 

(background, multiple scattering, etc.) and other distortions such as sample absorption and 
inelasticity effects. Thus, by dividing the total flux normalized measured, N/M, by those 

from the vanadium, Nv/Mv, we get an approximate form of S(Q) to within an arbitrary 

constant scale factor. Ensuring that S(Q) asymptotes to one at high-Q gives us the desired 
quick S(Q). 

5.3.3 Detector dark counts and deadtime corrections 

Counts are detected even when the X-ray beam is switched off. These are known as dark 

counts and come from thermally excited events in the detector and noise in the electronics. 
Detectors are designed to minimize the dark counts, for example, by cooling. Nonetheless, 

the dark count-rate of the experimental detector and electronics setup should be measured 

by determining the detected counts with the electronics live but the X-rays switched off. 
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Figure 5.1. (a) Deadtime corrected raw data and (b) quick S(Q), from Pt-I ethylene diamene, a charge density 
wave polymer. Very little structure is evident in the raw data at high-Q (e.g. see the right hand inset of (a)). 
However, after dividing by (f2(Q)) and plotting as the reduced total scattering structure function (bottom) 

the features in the scattering become evident. 

To ensure long-time stability in the detector/electronics setup it is good practice to repeat 

the dark count measurement  periodically throughout  the experiment.  The measured dark 

count-rate should be subtracted from the data first, before proceeding further with data 

analysis. 

Every time an X-ray or a neutron is detected the detector, and its associated electronic 

circuits, have to reset before another event can be detected. This takes some time called the 

deadtime. As the count-rate increases, the probability that a second neutron will arrive 

during this dead period, and therefore not be counted, increases. There is, therefore, a 
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count-rate dependent correction to be made to the observed total counts. This effect is 

distinct from the quantum efficiency of the detectors, ed and em, because it is an additive 

correction to the detected counts that depends on the total count-rate into the detector. The 

quantum efficiency is simply a multiplicative correction: it says that if a particle impinges on 

the live detector, it will be detected with the probability 1/ed(Es) to get the total number of 

particles incident on the detector you take the measured counts and divide by ed. The 

detector deadtime was not specifically taken into account in the discussion of general data 

corrections. This correction should be applied before proceeding with any other corrections. 

Provided the deadtime is of the order of a few percent it can be effectively be corrected 
using the standard formula for deadtime correction, 

N / =  N (5.9) 
1 - Rd~'d 

where N are the measured counts and Zo is the time the detector takes to reset: the detector 

deadtime. Ro is the count-rate (counts per second) in the entire detector. This includes all 

the particles incident on the detector and not just those that are saved after discrimination. 
This equation has to be modified in certain circumstances. For example, in time of flight 

measurements the count-rate in one time-channel can affect the deadtime in a neighboring 
time-channel if the detector deadtime is comparable to the channel width. This 

complication was discussed by Soper et al. (1989) and is presented briefly in Section 

5.3.8.4. The detector deadtime, Zd, can be measured, for example, by attenuating the beam 

systematically with foils of known attenuation coefficient. The resulting curve can be fit by 
Eq. 5.9 to obtain zd. 

There are alternative methods for assessing detector deadtimes. For example, the charge 
pulses output from an electronic pulser may be fed into the pre-amp of the detector. This 

pulser produces charge pulses at a known rate, either at random or regular time intervals. 

The charge pulses propagate through the detector electronics and are recorded on a scaler 
or in the MCA. The integrated charge in the charge pulses can be adjusted so that the pulser 

counts appear at a quiet part of the X-ray energy spectrum and do not interfere with real 
data. The ratio of detected pulses to the known total number of pulses (pulse-rate x count- 

time) therefore yields an instantaneous estimate of the deadtime. Clearly, this will be 

accurate only if the deadtime is dominated by the detection and acquisition electronics and 

not the time it takes to extract the charge from the detector itself. This method of estimating 

deadtime also introduces noise into the data unless the signal from the pulser is smoothed. 

Another method is to compare the elapsed time and the live time of the multi-channel 

analyzer electronics, should one be used; a piece of information which is sometimes 
available depending on the MCA. This only gives an accurate estimate of the deadtime due 
to the MCA conversion. 

An example of the importance of accurately correcting for deadtime is shown in 

Figure 5.2. These are synchrotron X-ray data shown before and after a deadtime correction. 
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Discontinuities in non-deadtime-corrected intensities occur at synchrotron beam fills when 

the incident intensity, and therefore count-rate into the detector suddenly takes a significant 

jump. In the case of the Figure, an incident beam attenuator was removed in the middle of 

the experiment accounting for the change in intensity and the discontinuity. Note the poor 

overlap, but also the amplitude of features in the overlap region are only preserved after the 

deadtime correction (inset to Figure 5.2(b), (c), and (d)). The factor by which the data had 

to be scaled to account for the detector deadtime is shown in Figure 5.2(a) determined both 

using the analytic method (Eq. 5.9 and Zd = 15 I~s) and using the pulser method. The 

pulser method results in a slightly better correction but introduces unwanted noise into the 

data. The region of overlap is collected to ensure that this correction works well, as is 

evident. Clearly, the effects of deadtime are less (but not necessarily negligible) in low 

intensity situations such as laboratory X-ray sources and many neutron experiments. 

5.3.4 Propagating random errors 

A scattering experiment involves estimating an underlying scattering cross-section by 

sending well characterized scattering particles into the sample and detecting the scattering 

pattern. As with all such stochastic measurements, the resulting intensity distribution is just 

an estimate of the underlying scattering probability. Since the scattering process is 

completely random this process obeys Poisson statistics (e.g. see Prince, 1982). An 

estimate of the uncertainty of this measurement is therefore obtained by taking the square 

root of the number of counts. Thus, if N ~ particles are detected, the uncertainty in this 

measurement is x/~.  As we have seen above, many data corrections are carried out before 

S(Q) is deduced. Note that the standard deviation of the counts is given by the square root 

of the dark current and deadtime corrected counts not the raw counts. The detector 

deadtime makes the scattering/detecting process non-random by introducing correlations 

between events. As a result the detector deadtime corrected counts rather than the raw 

counts are Poissonian. 

We would like to propagate the known uncertainties due to the random counting 

statistics through to the final S(Q). This can be done with a high degree of certainty using 

standard error propagation procedures (Prince, 1982). This was discussed briefly in 

Section 3.5.3. The mechanics of error propagation, and some aspects pertinent to the 

PDF, are discussed in detail in Appendix 5.3. For now it is sufficient to note that error 

arrays that will be propagated through the data analysis with the data arrays, should be 

created at this point, after the detector deadtime correction has been applied but before 

the data are normalized by the monitor counts and any subsequent corrections are 

applied. At each step, when the data-arrays get modified by sample corrections, the 

error arrays are correspondingly modified according to the principles laid out in 

Appendix 5.3. 
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5.3.4.1 Data collection strategy for optimizing the statistics on G(r). Note that because 
the coherent scattering signal diminishes with increasing Q the signal to noise ratio is 

poorest at high-Q. Thus, this is the region of the diffraction pattern where the most time 
should be spent in collecting the data. The effect can be dramatic in the case of X-rays as 

we describe below. We are interested in optimizing the statistical errors on G(r). This has 

been discussed by Thijsse (1984) for the case of a constant source intensity where he 

minimizes the expression for var(G(r)) (Eq. A5.3.9) using calculus of variations with the 
constraint of a fixed total counting time, T. The result indicates, given a fixed amount of 

time for the experiment, how much time should be spent on each point. The result is not 

exactly equal to, though similar (Thijsse, 1984), to the case of giving equal statistical 

significance to every point in S(Q) in the Fourier transform. Starting with Eq. A5.3.9 we 
see that this amounts to ensuring that QZAQ2 var(S(Qi)) is approximately constant in Q. 

For the case of X-ray scattering, where we have some control over this, we can assume that 
A Q 2 is constant and 

var(S(Qi))- (f(Q))4 (f(Q))4 var ~ 

where we neglect all the absorption and multiple scattering corrections, etc. to N/M. The 

approximation is much better in high-Q experiments if the Compton scattering is 

discriminated away and the N/M only in the elastic channel is considered. The variance of 
N/M is 

IN) var ~ = ~-~ 1 + ~  

or, in a well-designed experiment where the monitor counts are much higher than the 

signal counts, 

var ~ M 2 "~  M 

Thus, for every measured point to contribute equally to the Fourier transform we need to 

approximately satisfy the condition M(Qi)oc Q2/(fZ(Qi) ). For very high-Q experiments 
this is a demanding criterion. (fZ(Q)) falls smoothly from a value ofZ  2 at Q = 0 to a value 

of order unity at very high-Q. For a Q of 40 ,~-1 the counting time at high-Q could be as 

much as 5 orders of magnitude higher than at low-Q! 

The calculus of variations method (Thijsse, 1984) results in the less demanding criterion 

ofM(Qi) oc Qi/(f(Qi)), but still the monitor counts at Q -~- 40 ,~-1 should be 2 - 3  orders of 
magnitude higher than at Q --~ 1 ,~-1. If these criteria are not adhered to a perfectly valid 
G(r) is still obtained but not with optimal statistics. Also, information in S(Q) about small 
atomic displacements is strongest at high-Q (its intensity scales approximately like Q26r 2) 

so it is important to collect the high-Q data with good statistics. 
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5.3.5 Flux normalization 
For very stable sources such as sealed tube sources, the measurement time can be used to 

scale data points, provided the primary and secondary beam slits remain unchanged. 
However, in general, as described in Chapter 4, the incident flux is measured using an 

incident beam monitor. In this case the data points are simply divided by the monitor as 

indicated in Eqs. 5.17-5.19 and the flux normalization is a simple division of the 

(deadtime corrected) detector counts,/V, by the (deadtime corrected) monitor counts, M ~. 
In the case of an angle dispersive monochromatic synchrotron measurement the incident 

flux decays with time as the synchrotron beam current decays, with periodic refills where 

the flux recovers. 

In the case of a time-of-flight neutron measurement the flux is strongly energy 

dependent and the data must be divided by the source spectrum. This consists of a 
Maxwellian peaked at the temperature of the moderator with an exponential tail on the 

low-A, high-E, side due to undermoderated epithermal neutrons. This is shown in Figure 

4.5. An empirical expression has been proposed to explain the spectral shape (Howells, 

1984) 

t~)(A) -- t~max A 3-exp~ ~k ) J ' -  ~ -~- A 1+2-----------S 1 + exp{(A - AI)/A2} (5.10) 

where ~bmax, ~bepi, AT, A1, A2, and a are fitting parameters. The spectrum is measured with 
high accuracy by using an almost incoherent scatterer such as vanadium, or a completely 

incoherent (null-scattering) alloy such as V-Nb.  The scattering from this simply reflects 

the source spectrum and dividing the data point-by-point by the vanadium data results in a 

proper flux normalization. This has the additional advantage that detector efficiencies, 

solid angles and the detector profile, D, are automatically corrected since the same 

detectors are used to collect the sample and vanadium data. In fact, this division is carried 

out after absorption and multiple scattering corrections have been carried out on the sample 

and vanadium data, Eq. 5.27. Since the shape of the spectrum is accounted for in the 

measurement of the incoherent scatterer (vanadium) the total monitor counts (integrated 
over all times of flight) can simply be used to scale a particular data-set. However, to help 

correct for temporal instabilities in the experimental setup the sample and vanadium data 

are often both divided point-by-point on the time-axis by the counts from the vanadium 

monitor that also reflects the source spectrum. This results in a fairly accurate 
normalization for the source spectrum that, nonetheless, becomes fully corrected for 

detector geometry, efficiency, solid angle and profile by the subsequent division by the 

vanadium data as described above, though introduces more noise in the data unless the 

monitor data are smoothed. Note that, because the monitor is upstream of the sample and 
the detectors downstream, the same A value occurs at different times of flight, ~-, in the 

monitor and detectors and the monitor spectrum has to be interpolated and the ratio made 

for neutrons of the same wavelength, not the same ~-. 
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5.3.6 Absorption and multiple scattering corrections 
The absorption corrections were described in some detail in Appendix 5.1 and are 
practically the same for X-rays and neutrons. The objective is to evaluate the effective 
volume integrals ~,V~;[w } laid out in Eq. A5.1.30. These are integrals of the attenuation 
factors, Ax, defined in Eq. A5.1.3, over all trajectories that beams take through the sample, 
weighted by the incident beam profile function h(?) (Eq. A5.1.13). To evaluate them 
correctly h(?) needs to be known as well as the linear absorption coefficients of the sample. 
In the single scattering case the integrals are over volume elements in the sample, for 
double scattering they are double integrals over all volume elements, and so on. 

The beam profile function, h(?), must be evaluated experimentally. For example, this 
can be done by stretching an incoherently scattering fiber, such as piece of nylon, across 
the sample position and measuring the intensity. In general the fiber should be first 
stretched vertically and systematically translated horizontally, then stretched horizontally 
and translated vertically. If the experiment has cylindrical symmetry the horizontal 
translation is all that is needed. In practice, both making this measurement and correlating 
the resulting beam profile with the integral over volume elements are non-trivial and it is 
common practice to neglect h(~) and assume that the beam is homogeneous without serious 
detrimental effect on the corrections. In this case an 'effective' beam cross-section A ~ < A 
is sometimes used in the corrections (Sections A5.1.6) (Soper et al., 1989). 

For specific flat-plate geometries there are analytic expressions for the effective volume 
integrals as a function of scattering angle. These are derived in Appendix 5.2. Examples of 
absorption corrections for symmetric flat-plate geometries are shown in Figure 5.3. For 
cylindrical, and other more general, sample geometries the integrals can be evaluated at 
each scattering angle numerically by dividing the sample into volume elements and 
evaluating the attenuations due to trajectories to and from each volume element. In this 
case it is computationally efficient to take advantage of any symmetries that are present 
(Paalman and Pings, 1962; Poncett, 1977; Soper and Egelstaff, 1980). 

It is important to know the attenuation coefficients,/~x(E), fairly accurately for sample 
and sample holder at the energy of interest. These are tabulated for the various elements for 
X-rays (Wilson, 1995) and neutrons (Bodek et al., 2000) and are now available on the web 
(for example, at the US National Institute of Standards and Technology (NIST) website). 
For flat-plate geometries it is most accurate to measure the absorption (attenuation) length, 
t~x(E)t, of the sample where here t refers to the sample thickness, as described in Chapter 4. 
If an energy resolving detector, such as a solid-state detector, is used with an MCA then 
/~(E)t, for each MCA channel is directly determined, though do not destroy the detector 
with unattenuated direct beam! Because powders are used the beam spends part of its 
trajectory traversing the space between grains where it is not attenuated. In this case, the 
lower powder density, rather than the fully-dense material density, should be used when 
calculating the sample linear absorption coefficient. In time-of-flight neutron experiments 
the energy dependence of the neutron absorption has to be approximated. A linear 
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Figure 5.3. Calculated absorption factor (defined as the sample effective volume divided by the real volume, 
V'/V) as a function of scattering angle for symmetric flat-plate geometry. (top) transmission (bottom) reflection. 

The curves show the factors calculated for different sample absorption,/~t, where a large/zt means a highly 
absorbing sample. The sample effective volume can be greater than the actual sample volume in transmission in 

the back scattering region. This is because of the long path-length the beam takes through the sample. 
Note the useful property that for an infinitely thick sample (large/zt) in reflection geometry the absorption 

correction is independent of angle and is simply a constant (PDFgetX manual). 

dependence of the absorption cross-section with wavelength is assumed: o ' abs(A)-  

Ao'abs(1) where o'abs(1) denotes the neutron absorption resonance at A = 1 ,~ (Nield and 

Keen, 2001). Convent ional ly  neutron absorption cross-sections are reported for neutrons 

with velocities of 2200 ms-1  which is equivalent  to A - 1.798 ,~. This assumption works 

fairly well except  close to neutron absorption resonances.  There corrections become more  

complicated (e.g. see Hannon et al., 1990) with the scattering cross-sections, as well as the 

absorption cross-section, having anomalous scattering corrections in exact analogy with 

the case for X-rays. In general,  data in the vicinity of absorption resonances are not used. 

These days the X-ray mass absorption coefficients and neutron absorption cross- 

sections of the elements are often tabulated within data analysis software programs and it 

suffices to tell the programs the composi t ion of  the sample and container and their 

respective (powder) mass densities. 

Multiple scattering corrections are less straightforward to calculate. They depend on 

sample thickness and sample transparency and therefore also depend on the sample 
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absorption. As can be seen from Eqs. A.5.1.6 and A.5.1.10 the exact calculation of double 

and higher order multiple scattering is difficult and requires evaluation of nested integrals. 
Furthermore, these integrals contain the sample double-differential cross-section, precisely 
the quantity that we are trying to measure. When S(Q) is not highly directional an 
approximation can be made that this cross-section is isotropic. Another approximation can 
also be made that higher orders of scattering are just multiples of lower order scattering. 
This results in a series that converges quickly since each higher order of scattering is 
significantly weaker than the previous one. Furthermore, it means that only the second 
order scattering need be evaluated explicitly. In this way the multiple scattering can be 
straightforwardly, though arduously, calculated (Warren, 1990; Blech and Averbach, 
1965; Dwiggins, 1972; Dwiggins and Park, 1971; Sears, 1975; Serimaa et al., 1990). 
Examples of X-ray double scattering ratios, I2/I~, are shown in Figure 5.4 for symmetric 
flat-plate geometries and samples of varying degrees of transparency. Multiple scattering is 

moderate in low energy X-ray experiments because of the relatively large sample 
absorption/scattering ratio. It is a much more significant problem in most neutron 
measurements where the sample absorption cross-section is much less than the scattering 

cross-section. 
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Figure 5.4. Calculated double scattering ratios, I2H1, for symmetric flat-plate geometries and samples of varying 
degrees of transparency. (top) transmission (bottom) reflection. The double scattering includes elastic and 

inelastically scattered contributions and was calculated for nickel using X-rays of wavelength A = 0.7107 ,~ 
(PDFgetX manual). 
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As can be seen in Figure 5.4, in the case of X-rays the multiple scattering contribution to 

the intensity is very small in reflection but can be significant in transmission geometry, 

especially at high scattering angles. Calculation of the X-ray multiple scattering intensity is 

considerably simplified when only purely 'elastic' scattering is collected (the Compton 

scattering is discriminated away) since only completely elastic multiple scattering events 
need to be considered. 

For crystalline samples the isotropic approximation is disastrously wrong (the scattering 

cross-section is strongly peaked in the directions of Bragg-peaks!). Nonetheless, the 

extensive averaging, both due to the powder and of the nested integrals, means that the 

isotropic approximation is thought still to work rather well and no more sophisticated 

corrections are generally applied. As we mentioned before, a more accurate approach is to 

simulate the real experiment using Monte Carlo (e.g. see Howells, 1986) though this is 

rarely needed in practice. The standard approximate corrections appear only begin to break 

down when more than --~ 20% of the incident beam is getting scattered. For very thin 

samples it is often adequate to carry out no multiple scattering corrections at all without 

problem. Again, multiple scattering corrections are present in most modern software data 
analysis programs. 

5.3.7 X-ray specific corrections 

5.3.7.1 Overview. Typical X-ray energies used in diffraction experiments are in the 

range 7-120  keV. Most excitations in materials, such as phonons and magnons, have 

energies on the scale of meV to eV. In order to resolve these inelastic processes 

explicitly it is necessary to have an energy resolution of your measurement of 

AE/E ~ 10 -6 or 0.0001% which is an extremely demanding task. Standard experi- 

mental practices in powder diffraction do not give nearly this resolution; for example, 

the use of an energy resolving detector such as an intrinsic semiconductor detector 

gives an energy resolution of ~ 200 /20000-  10 -3 or 0.1%. As a result, the coherent 

inelastic scattering from the sample, such as phonon scattering, is not resolved and 

these counts are integrated into the total measured counts: the measured 'elastic' 

X-ray scattering includes all the unresolved low energy inelastic scattering. The integral 

over energy of Eq. 5.7 is already carried out in the detector. Furthermore, on the 

energy scale of the measurement, this coherent inelastic scattering component lies very 

close to the elastic line and to a very good approximation the integration is carried out 

at a constant value of Q. This is described in detail in Chapter 7. The 'elastic' 

scattering in an X-ray experiment is, to a high degree of precision, the total (or energy 

integrated) scattering that was defined in Eq. 5.7, plus any elastic incoherent 

contributions. A consequence of this fact is that the X-ray measurement is very fast 

on the timescale of lattice vibrations. As far as the X-ray measurement is concerned 
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the atoms appear stationary and the resulting structure that is measured is the time, 
and sample, average of instantaneous snap-shots of the lattice vibrations (sometimes 
called the static approximation resulting in the 'same-time' correlation function). 

A second scattering process occurs for X-rays as well as the scattering that gives rise to 

the coherent elastic scattering. This is Compton scattering. Unbound, or weakly bound 
electrons recoil during the scattering process. The scattering event must conserve 
momentum and energy. Consider an electron that is initially at rest. After an X-ray scatters 
off it the momentum of the X-ray has changed and therefore the momentum of the electron 
must also change. Since the electron was initially at rest it is clear that this collision with 
the photon starts it moving and therefore some energy was imparted to the electron from 

the X-ray: it is an inelastic process. It is also an incoherent process. This incoherent, 
inelastic, Compton scattering is often referred to by X-ray scatterers simply as 'inelastic 
scattering'. This is correct but imprecise and can lead to the confusion we referred to in 
conversations between X-ray and neutron scatterers. The latter group generally thinks of 
phonon scattering and other inelastic coherent types of scattering on hearing the expression 
'inelastic scattering'. In general, the electron that is scattering the X-ray is not at rest; it can 
be moving towards or away from the incoming X-ray. There is therefore a range of 

energies where Compton scattering occurs, symmetric about the energy shift of the 
stationary electron. Compton scattering contains information about the momentum 

distribution of electrons in the atoms and is sometimes used to probe this. An example of 
Compton and elastic scattering, measured at various Q-values in an MCA using a 
germanium solid-state detector, is shown in Figure 5.5. For our purposes it is an annoying 

incoherent background that must be removed. The best way to do this is to eliminate it by 
carrying out an experiment with good enough energy resolution. Failing this, the 
Compton scattered intensity can be calculated theoretically and subtracted as we describe 
below. 

Another elastic incoherent contribution to the scattering is the self-scattering which 
occurs in the forward scattering direction. In general, this scattering is confined to very 
small angles and is inaccessible experimentally because of the incident beam. When large 
length-scale (nanometer) inhomogeneities exist in the sample, this forward scattering is 

spread out and becomes visible as small angle scattering. Strictly speaking this should be 
removed from the data before obtaining S(Q). In practice the contribution from small angle 
scattering is generally very small at angles accessible in a normal powder diffraction 
measurement and this contribution is rarely considered explicitly. However, if it is 
significant it should be removed. 

Another feature of the X-ray experiment is that the Thompson scattering process 
polarizes the scattered beam. The scattered beam is polarized such that the electric vector 
lies in a direction perpendicular to the scattering plane (the plane defined by the incoming 

and outgoing beams). Most X-ray detection schemes are not sensitive to beam polarization 
so, on first thought, this fact should not matter. However, on further thought it becomes 
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Figure 5.5. Comparison between measured Compton and elastic scattering intensities measured in silica 
glass using 80 keV X-rays. Note the Compton scattering is much stronger than the elastic signal at 

high-Q (Petkov et al., 2000). 

obvious that the sample is acting as a polarizer and so the measured intensity will depend 

on the degree and nature of the polarization of the incident beam. If the incident beam is 

also polarized with the electric vector perpendicular to the scattering plane then the full 

intensity will be transmitted at all angles. However, if the incident beam is polarized in the 

scattering plane, the scattered intensity will depend on the scattering angle: it is modulated 

by a polarization correction that is given by the projection of the incident beam electric 

vector on a plane perpendicular to the scattered beam. For example, at a 90 ~ scattering 

angle and the electric vector lying in the scattering plane, the scattered beam lies along the 

direction of the electric vector and the projection gives zero intensity. Clearly, even an 

unpolarized incident beam results in a polarization correction because an unpolarized 

beam can be decomposed into components that are parallel and perpendicular to the 

scattering plane. In this case the scattered intensity will be a minimum, but will not fall to 

zero, at 20 = 90 ~ We note two interesting side effects of this polarization dependence of 

the scattering. First, it explains why most synchrotron X-ray experiments are carried out 
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with a vertical scattering plane despite this configuration being more difficult from an 
engineering standpoint; it is because the X-ray beam from the synchrotron is polarized in 
the plane of the synchrotron ring. It is easier to stand the experiment on its side than to 
stand the synchrotron beam on its side! The second point to bear in mind is that a crystal 
monochromator that monochromatizes a beam by Bragg scattering, also polarizes the 
beam. This should be accounted for in all quantitative X-ray data corrections protocols. 

5.3.7.2 Polarization correction. As discussed above, X-rays become polarized by the 
scattering process and this affects the measured intensity as a function of scattering angle. 
The correction factor to account for this angle dependence of the scattering is 

where 28 is the scattering angle and A depends on the degree of polarization of the incident 
beam. The term A is given by A = (1 - f)l( l  + f). Here f is the polarization rate of the 
incident radiation in the direction perpendicular to the scattering plane. If the radiation is 
unpolarized, f = 0 and A = 1; if it is fully plane polarized perpendicular to the scattering 
plane (the situation for synchrotron radiation exactly in the plane of the synchrotron ring) 
f = 1 and A = 0. In this case there is no angle dependence to the scattered intensity due to 
polarization effects and therefore no polarization correction. In a real synchrotron 
experiment the beam is not 100% plane polarized and A will take a small value in the 
vicinity of 5 % .  

A number of special cases are worthy of note. When the source is unpolarized but a 
crystal monochromator is used in the incident beam the beam becomes partially polarized 
by the monochromator. In this case A = cos2 2a,  where 2 a  is the scattering angle of the 
monochromator. Another common geometry is to have an unpolarized source incident on 
the sample but a monochromator in the scattered beam. In this case the polarization 
correction becomes P, = ((1 - cos2 2, cos2 2$)/2). Where it is not known, the degree of 
polarization of the beam can be determined experimentally (Egami, 1978). 

Note that the commonly quoted Lorentz polarization factor, given by LP = ((1 - 
cos2 8)/2 sin 28) that includes the Lorentz factor, l/sin 28, should not be used. This 
contains two corrections; the first is the normal correction for beam polarization described 
above, P,. The second is a phase-space correction that should be applied to single crystal 
data when peak integrated intensities are measured. It effectively normalizes the integrated 
intensity by the volume of reciprocal space that it is measured over. This correction 
happens automatically in a powder diffractometer measurement. 

5.3.7.3 Compton scattering correction. The idea of Compton scattering was introduced 
in Section 5.3.1. Traditional low energy resolution, low X-ray energy measurements were 
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carried out by collecting the elastic and Compton scattering together and then subtracting 
the theoretical Compton contribution, nine(Q) which is expressed as an intensity per atom 

in the sample. The Compton cross-section (per atom) is given by 

Ca a ] nine(Q) - Eo a=l a=l 

(Warren, 1990). It is simply (neglecting small cross-terms between non-orthogonal 
electrons in neighboring atoms) the classical Thompson scattering intensity minus the 
coherent scattering power, expressed as fZ(Q) for a particular atom, summed over all the 

atoms. The factor (Ec/Eo) ~ is known as the Breit-Dirac recoil factor and is a small 
correction that takes into account the effects of radiation pressure. The exponent, a can 

take values 2 (Ergun, 1968) or 3 (Warren, 1990) depending on the nature of the 
measurement. When photon flux is measured in a counter the value 2 is used (Ergun, 

1968). Compton intensities for all the atoms are tabulated in the Intemational Tables 
of Crystallography C (Wilson, 1995). These curves have been fit using an empirical 
expression and parameterized for all the elements, see, for example, Thijsse (1984). Note 
that the calculated intensities from the International tables should be scaled by the Breit-  
Dirac recoil factor, before being subtracted from the data. Here E0 is the energy of the 
elastic scattering, and the average energy of the Compton scattering, Ec is given by 

E 0 - E c  _ E~ ( 1 - c o s 0 )  (513) 
E c me c2 

where me is the rest-mass of the electron, c, the speed of light and 0 half the scattering 
angle. 

The parameters for determining nine(Q) are now contained in a number of X-ray data 

analysis programs. The calculated Compton scattering should also be corrected for 
absorption before being subtracted, where account should be taken for the fact the 
Compton scattering has a different energy than the elastic scattering when evaluating the 
absorption correction (e.g. see Appendix 5.2). 

When higher X-ray energies are used, and at higher scattering angles, the elastic 
scattering cross-section decreases and the Compton cross-section increases. The ratio of 

modified (Compton):unmodified scattering also increases as the elements in the sample 
get lighter. For modem high resolution PDF measurements at high-Q the Compton 
scattering can be considerably stronger than the elastic signal. This is shown in Figure 5.5 

where the measured elastic and Compton scattering from silica glass measured with 
80 keV X-rays is plotted. In this case serious signal to noise problems are encountered if 
the old mode of data collection is utilized and now it is common practice to discriminate 
away the Compton scattering directly. However, at low-Q the elastic and Compton shifted 
intensities often cannot be resolved. In this case a method is used where the theoretical 
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Compton is subtracted from the low-Q data and the Compton scattering is discriminated 
away at high-Q. In the crossover region the subtracted theoretical Compton component is 
gradually reduced using a smooth interpolation function. A road-map for doing this that 
takes into account the finite width of the Compton scattering (generally ignored in the 
simple Compton subtractions described above) was suggested by Ruland (1964). The 
proportion of Compton modified scattering that appears in the measured elastic scattering 
is then given by R(Q) -- ~ W(E)ninc(Q, E)dE/~ ninC(Q, E)dE where W(E) is the band-pass 
function of the detection device and n ine (Q,  E )  is the Compton profile. The Compton profile 
ninc(Q -- 40/k,E) for silica glass can be seen in Figure 5.5 as the broad, Lorentzian-like, 
peak just below the elastic scattering intensity at channel number 640. Then R(Q)n inc (Q) is 
subtracted from the data rather than nine(Q, E) directly. In practice, neither W(E) nor the 
exact energy dependence of the Compton profile are known accurately and an empirically 
determined R(Q) is used. The form 

R(Q)-- 1 + -~ 1 + o2d ]}, 
(Y + b) 2 
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has been suggested by Ruland (1964). Here A and ~ are the wavelengths of the elastic, and 

Compton modified, scattering, respectively. Y is a Q-dependent function given by Y--  
cQ3/(a2 + Q2). In these equations, a, b, c and d are constants. The Ruland function given 

above is not entirely satisfactory (e.g. see Thijsse, 1984) and is not strictly applicable to the 

modem experimental setup with energy discrimination by MCA and a purely empirical 

function is often used (Petkov, private communication) as illustrated in Figure 5.6. 

A more accurate method for removing Compton scattering is to calculate the full profile, 
n inc (Q, E), within some approximation for the momentum distribution in the atom, at every 

Q value. Then the X-ray spectrum contained in the MCA can be fit with two peaks 

originating from the Compton and elastic scattering, respectively. The fit can be constrained. 

For example, the energy shift of the center of the Compton peak is known (Eq. 5.13). The 

desired elastically scattered intensities are then obtained from the integrated area under the 

fit elastic peak, or better, by subtracting the calculated Compton peak and integrating 

numerically the residual counts. This approach has been demonstrated by Laaziri et al. 
(1999). It is computationally very intensive and is easier on simple systems with low-Z 

elements, as in the case of amorphous silicon (Laaziri et al., 1999). In general, the empirical 
Ruland method is more often used except where the highest accuracy is required. 

5.3.7.4 Atomic form-factor. The final step in determining S(Q) is to divide the data by 
(f(Q))2 (Eq. 5.1) where this is defined as 

(f(Q))2 a , .H , 11 -- Ca(f6 (Q) + f a  + ifa) = a Ca(f6(Q)+fa) Car a (5.14) 
(1 (.1 

Here the sum is over atomic species of concentration ca,f~)(Q) is the atomic form-factor for 

species a, and f~a andf~ are the anomalous scattering corrections to the form-factor. The 
i indicates an imaginary number. The anomalous scattering corrections can be neglected 

unless the incident X-ray energy is close (within --~ 100 eV) to an absorption edge of one of 
the elements. 

The factor f~(Q) is strongly Q-dependent. It has been calculated for all the elements 

using relativistic or non-relativistic Hartree-Foch or Dirac-Slater atomic wavefunctions 

and the results tabulated (Wilson, 1995; Doyle and Turner, 1968; Fox et al., 1989). They 

are tabulated in one place for all the elements in the International Tables for 

Crystallography C (Wilson, 1995). These data have been fit and parameterized. Originally, 

they were expressed as a sum of Gaussians in the low-Q region up to Q --~ 20A-1 and in 

the high-Q region ln(f(Q)) was expressed as a polynomial series (Wilson, 1995). The 
parameters for each element are in the International Tables of Crystallography C, Tables 

6.1.1.4 and 6.1.1.5 (Wilson, 1995). Clearly, having to join the low and high-Q ranges is 

something of a pain. More recently, Waasmaier and Kirfel (1995) have presented new 

parameterizations for all the elements where the f (Q) functions have been successfully fit 
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over the full range of Q to 75 ~ -1  using a fit to a sum of 5 Gaussians plus a constant: 

5 
f ( s )  -- ~ .  a i e -bis2 -Jr- c ,  (5.15) 

i=1 

where s -  Q/47r. 

Anomalous scattering factors for the elements have also been calculated (Cromer and 
Liberman, 1970, also see the discussion in Kissel et al., 1995). When these need to be 
known accurately, for example in an anomalous scattering experiment, it is generally 
better to evaluate them experimentally by measuring the absorption edge of the element in 

question and carrying out a Kramers-Kronig transformation on the experimental data (e.g. 
see Price and Saboungi, 1998; Petkov et al., 2000b and references therein). 

Because of their importance over a wide spectrum of the sciences and the fact that they 
are difficult to determine accurately, calculations of atomic scattering factors are 
constantly being reexamined and improved. See for example, Kissel et al. (1995) for a 
thorough reexamination of the situation as of 1995. With improvements in computing it is 
also possible to start trying to take into account solid-state effects that change the electron 

distribution, and therefore modify the scattering factor (in general free-atom scattering 

factors are used) (Ankudinov and Rehr, 2000). 
The other important average form-factor average needed is (fZ(Q)). This is proportional 

to the total sample scattering cross-section, including coherent and Laue incoherent 

scattering, and is defined as 

( f 2 ( Q ) ) _  y .  Ca[(f~)(Q)__~_fta)2 + (ftat)2 ] (5.16) 
a 

where the symbols have the same meaning as in Eq. 5.14. 
An example of corrected, normalized data with (fZ(Q)) superimposed on top is shown 

in Figure 5.7. When the data are divided by (fZ(Q)) and plotted with the Q weighting as 
Q(S(Q) - 1) significant diffuse scattering is evident at high-Q that is not apparent in the 

corrected but undivided data, as shown in Figure 5.8. 

5.3.7.5 Putting it all together. Putting together the general expression for the sample 
single scattering cross-section, Eq. 5.8, and the specific X-ray corrections, we get 

- d ~  m7 gtc;ca ~ 7  Pi Vts;scaP sD dO Ke. d 

! R[ninc m inel ] - m - + (5.17) 

where the terms not defined above are defined in Appendix 5.1. The primes on the N and M 
denote that the data are deadtime corrected. Here, m ~ is the multiple scattering calculated 
assuming only elastic scattering and m inel is the additional multiple scattering where at 
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least one of the scattering events was an inelastic (Compton) event. Since in the high-Q 
region where the multiple scattering becomes important the Ruland window function R(Q) 
is almost zero, m inen is often neglected, m inel can be significant, and should be calculated, 

when the Compton is not experimentally discriminated away. 

In Eq. 5.17 everything is known well except the product pSD d~  Ked. In general none of 
these factors depends on Q (only d~,  the detector solid angle, may change with Q if the 
detector slits or the detector-sample distance vary during the experiment) and so the 

product is simply an unknown constant,/3. This scale factor can be estimated by observing 
that in the high-Q region the scattering from the sample is mostly incoherent and 
approximately equal to (fZ(Q)). Thus, substituting (fZ(Q)) for (do'S/dy2) in Eq. 5.17 and 
rearranging we get 

lim _ Vc;sca c 
O"'*amax ~ ' We;ca 

/3 -- I 2 m/ R(nine mine (5.18) eiVs;sea((f (Q)) + + + )) 
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Fig. 5.8. Same data as shown in Figure 5.9 but the data are now plotted in the form of Q(S(Q) - 1) after being 

divided by (f(Q)}2 to obtain S(Q). Significant diffuse scattering is evident at high-Q that is not immediately 
apparent in Figure 5.7 (PDFgetX manual). 

Note that if the Compton scattering has been completely discriminated at high-Q then R is 
zero here and the theoretically calculated Compton scattering, n inc, and inelastic multiple 
scattering, m inc, should not be included. More elaborate approaches for data normalization 

making use of a wider range of data have also been proposed (Thijsse 1984; Kaszkur, 

1990; Cumbrera and Sanchez-Bao, 1995). 

Finally, 

(d s) [(N)sc (V sca)(  )c]( 1 
- - ~ - -  M-t - Vtc;ca M-7 PiVts;sca[~ 

) - m / - R(n inc -Jr- minc) (5.19) 

5.3.8 Time-of-flight neutron specific corrections 

5.3.8.1 Overview. Neutrons that have appropriate wavelengths for structural studies 
have thermal energies: ~ 100 meV. This is comparable to the energy of solid-state 
excitations such as phonons and magnons. Many typical diffraction geometries will have 
sufficient energy resolution to choose whether these effects are included or excluded in the 
measured scattering intensity. Thus, it is possible to obtain two distinct differential 

scattering cross-sections: the elastic differential cross-section do-/dO(AE = 0) and the total 
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scattering differential cross-section, do/dO, as we discuss in Chapter 7. A perfectly 
legitimate PDF can be obtained from either cross-section; the former giving the time- 
averaged structure (time-dependent atomic correlations are lost) and the latter giving the 
average of the instantaneous structure (time-dependent correlations are preserved). By 

varying the range of energy over which the data are integrated, the time-scale of the 
experiment can be continuously varied. For example, if the range of integration, AE, is 
larger than the energy range of the phonons (~  100 meV) then the measurement is quicker 
than the lattice vibrations and the correlated atom displacements (the phonons) will be seen 

explicitly in the resulting PDF. This is (approximately) the situation in the most common 
neutron PDF experiments; the time of flight powder diffraction experiment at a spallation 

neutron source. In this case, as with the X-rays, the measured intensity is automatically 
integrated over all energy transfers. 

As with X-rays, there are additional scattering processes for neutrons that do not yield 

structural information. In the case of neutrons it is the magnetic scattering. To obtain a 
purely structural PDF it is necessary to remove magnetic scattering from the measured 
intensity. In practice this is often neglected. The reason that this is possible is that the 
magnetic scattering contributes rather weakly to the PDF. Because of the magnetic form- 
factor, coherent magnetic scattering is confined to rather low Q-values whereas the nuclear 
scattering extends to high-Q. All data at all Q-values are used in the PDF, but high-Q 

scattering is relatively more important because of the Q-weighting in the kernel of the 
Fourier transform. If the magnetic scattering is not explicitly removed from the data it 

distorts the resulting structural PDF. However, experience suggests that the distortion to 

the PDF is small enough (it is a weak long-wavelength oscillation) to be neglected in most 
cases. On the other hand, as was discussed in Section 3.3.2, it is possible to remove the 
nuclear scattering component and Fourier transform the magnetic scattering to learn about 

magnetic correlations in the solid or model it directly in Q-space. As with X-rays, 
significant small angle scattering should be removed, though similar arguments that apply 
to the magnetic scattering also apply to the small angle intensity. Finally, we note that the 
scattering of neutrons by nuclei is isotropic (s-wave) and does not introduce any 
polarization so there is no polarization correction for nuclear scattering. 

Thus, to obtain S(Q) from the corrected intensity from an energy integrated experiment 
(time-of-flight neutron powder diffraction experiment, or a two-circle reactor experiment 

with no energy analysis), first, if desired, the magnetic scattering should be removed. Then 
the elastic incoherent scattering, small angle and  (b) 2 - (b2), is removed and the resulting 

coherent single scattering intensity divided by the mean scattering length squared, (b) 2 

according to Eq. 5.1. (b) 2 and  (b 2) are defined in the same way as the average form-factors 

(Eqs. 5.14 and 5.16) except the sums run over all isotopes and spin-states of the nuclei as 
well as over chemical species. In practice, the information about the sum over isotopes and 
nuclear spin-states are contained in tabulated values of the coherent and incoherent nuclear 

cross-sections for elements in their natural abundances. 
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The energy dependence of the neutron scattering cross-sections is assumed to be linear 

with wavelength. A better approximation is to measure the energy dependence of the ratio 

of the transmitted beam to the incident beam. This is done by placing a vanadium monitor 

downstream of the sample in addition to the upstream monitor. This ratio yields the total 

attenuation cross-section of the sample from which can be extracted the average scattering 

cross-section (Howe et al., 1989; Soper et al., 1989). 

In an energy analyzed experiment (triple-axis measurement at a reactor or a measure- 

ment at a chopper spectrometer at a spallation source), the data should be integrated over 

the desired range of energy transfer to obtain do-/dO (Chapter 3). This should then be 

treated in the same way as the energy integrated measurements to obtain S(Q). 

5.3.8.2 Data-sets. It is normal to collect a number of data-sets as well as the sample data 

in order to make the necessary data corrections. 

1. Sample data. Sample is usually in a container, or can, and mounted in some sample 

environment (cold-stage, furnace, cryostat, magnet, pressure cell, etc.) 

2. Empty sample can. The sample container is mounted in the same environment as the 

sample was measured but empty. This data-set is typically collected with less integrated 

incident flux than the sample data-sets received. However, better statistics are required 

in the container data if the scattering from the container is significant. The rule of thumb 

is that the measurement time should be in proportion with the strength of the scattering. 

Provided there is good reproducibility between sample containers it is not necessary to 

measure exactly the same container as held the sample. 

3. Empty environment. An additional background is measured from the diffractometer 

without anything at the sample position but all the rest of the sample environment in 

place. This is the instrument background. Collection time depends on how large the 

background is. The data can be collected for considerably less time (1/4 the collection 

time for example) if there is a negligibly small background as is generally the case for 

measurements in ambient temperatures and pressures. However, if an environment is 

used with significant background such as a furnace or pressure cell so that the 

background scattering is a significant proportion of the total measured scattering then 

data should be collected for longer. 

4. Vanadium rod. Vanadium is an almost perfectly incoherent scatterer of neutrons. It is 

customary to measure a sample of vanadium to determine the source spectrum. This 

data-set should be measured with good accuracy as it will be used to normalize all the 

other data-sets. This need not be measured in a sample environment (indeed it is better 

to make this measurement with a low background for increased accuracy). However, it 

should be made close in time to the main measurements to ensure that slowly varying 

changes in the source spectrum are accounted for as well as possible. Careful 
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experimenters often measure a series of vanadium data-sets periodically throughout an 

experiment. These are combined together for increased statistics and to average out 

long time-scale fluctuations in the spectrum. 

5. Crys ta l l i ne  s t andard .  A sample with known lattice parameters is also run periodically. 

This is used to convert accurately the neutron time-of-flight information into 

momentum-transfer, Q. This must be done individually for each detector for the 

greatest accuracy and resolution to be obtained when detectors are combined. The 

standard sample is often silicon or quartz. 

6. In t ens i t y  s t andard .  As discussed in Section 5.4.2, a crystalline standard with similar 

total scattering cross-section to the sample may also be measured to help achieve an 

absolute intensity normalization. 

Data-sets 5 and 6 are optional. The Q-calibration is often carried out by the instrument 

scientist of the diffractometer and standard calibrations are available on file. The intensity 

calibration is only required if the absolute intensity of a PDF is required with high 

accuracy. Additional vanadium container and vanadium background runs may also be 

required if, for some reason, the vanadium is supported in a container. 

5.3 .8 .3  C o n v e r t i n g  t i m e - o f - f l i g h t  to Q. For a given value of 20, the value of Q depends 

on the wavelength which is obtained from the time of flight of the neutron. A 

polychromatic pulse of neutrons of width ---1 Ixs emerges from the moderator at time 

t -- 0. The neutrons fly down the primary flight path, Ll, which is typically of order 10 m or 

more to the sample. After scattering the neutrons fly along the secondary flight path 

(L2 --~ 1 m) to the detectors. The time-of-flight, ~-, is the time it takes for the neutron to get 

from the moderator to the detector. If an elastic scattering event is assumed in the sample, 

this directly gives the velocity of the neutron, v, its momentum and therefore its 

wavelength using the de Broglie relationship, i.e. 

L2 -+- L1 L 2"rr 2-rrh ~" 
v - = - ,  p --  mnV - hk ,  A - - (5.20) 

~" ~" k m(L1 -k- L 2) 

Some useful empirical relationships that hold for neutrons are given below: 

k(~_l)  = 1588.2 L(m), A(/k) -- 0.0039562 "r(txs) (5.21) 
"r(~zs) L(m) 

81.807 
E ( m e V ) -  A2( ~ (5.22) 

In practice, the t -- 0 point is not perfectly known and the exact trajectory through the 

instrument can depend on the sample position for example. To obtain accurate Q-values it 

is therefore necessary to make corrections to the above expressions using a calibration 
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standard. A standard crystalline sample is run and a number of diffractometer constants are 

determined for each detector or detector bank. The same practice is used when powder 

diffractometers are used for Rietveld refinement studies. However, we note here that the 

diffractometer constants used in Rietveld refinements are not, in general, suitable for PDF 

measurements. The reason is that pulsed neutron peaks are highly asymmetric. Rietveld 

refinements determine the peak position according to some arbitrary consideration, for 

example, the peak maximum. This is fine if the same Rietveld code is used to analyze the 

calibration sample and the data themselves since the Q-assignment is done in a self- 

consistent way. However, in a PDF analysis the data are Fourier transformed and the 

continuous distribution of intensity as a function of Q is required; the absolute value of Q 

of each data point is therefore needed. Ideally, the data should be deconvoluted from the 

instrument resolution function. In practice empirical diffractometer constants are 

determined with different Q-dependences to account for these effects. 

5.3.8.4 Detector deadtime corrections. Corrections have to be made to the simple 

detector deadtime equations (Eq. 5.9) if the deadtime is greater than the time-of-flight 

channel width (Soper et al., 1989). Then the deadtime correction in a particular time- 

channel depends on the count-rate in nearby earlier time-channels. In this case 

A R  m 
R = (5.23) 

- Y.  ajRj) 
J 

where the sum goes over all the time-channels which affect the channel in question. Other 

complications can arise if detectors are multiplexed so that more than one detector feeds 

through some part of the data-acquisition electronics. In this case an additional deadtime 

can be introduced because of a high count-rate in a different detector and the sum in 

Eq. 5.23 should be a double sum over all the time-channels and detectors which affect the 

time-channel in the detector in question. 

Detector deadtime corrections are generally sorted out by the staff at the neutron facility 

and are not generally the concern of the user other than to ensure that they are properly 

accounted for. 

5.3.8.5 Inelasticity (Placzek) corrections. Unlike with X-rays, the energy of the thermal 

neutron is comparable to the energies of low energy excitations (phonons and magnons) in 

the solid. Thus, when the neutrons are scattered inelastically their energy changes 

significantly. This is made extensive use of in the field of inelastic neutron scattering. 

Lattice dynamics and inelastic scattering in the context of total scattering studies is 

discussed in detail in Chapter 7. Here we discuss simply corrections that have to be applied 

to the data to account for inelastically scattered neutrons that become incorrectly binned 

in Q. This occurs because of the geometry of the experiment. It amounts to making 
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the integration of the double differential cross-section over energy not along a path of 

constant-Q as assumed in the definition. It occurs for reactor based angle dispersive 

measurements as well as tof neutron measurements though the corrections are different. It 

is described in detail in Section 7.5.2. To carry out a precise correction the sample dynamic 

structure factor, S(Q, o9), must be known as well as the loci through (Q, o9) space along 

which inelastic neutrons are integrated due to the specific geometry of the measurement. 

For example, loci of integration for various detectors on the, now retired, LAD 

diffractometer at ISIS are shown in Figure 5.9. The deviations from ideal (constant-Q) loci 

are clearly largest at small diffraction angle and small-Q. A complete correction is 

impossible because in general we are trying to measure S(Q), so if we already knew 

S(Q, o9) as required to make the correction, we would not have to measure S(Q)! An 

approximate approach is to expand S(Q, o9) in moments.  The first few moments do not 

involve details of the potential and phonon band-structure and so the approximation is 
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Figure 5.9. Loci of integration from time of flight neutron powder diffractometer LAD. The vertical axis shows 
energy transfer, hm, and the horizontal axis shows Q. Neutrons that are scattered inelastically (i.e. at finite ~o) 
will be assigned an incorrect Q-value because of the geometry of the tof experiment. The Q-value that will be 

assigned to an inelastically scattered neutron can be deduced by following the line from the (Q, m) value of 
the scattering event to the m -- 0 line. The six panels correspond to the six detector banks on LAD at 

(top left to bottom right) 20 : 5 ~ 10 ~ 20 ~ 35 ~ 58 ~ and 90 ~ (Howe et al., 1989). 
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made that the correction involving only these first few terms is sufficient (Section 7.5.2). 
This approach was first laid out by Placzek (1952) and developed by Yarnell et  al.  (1973) 
and Powles (1973) for reactor experiments and further refined and extended to tof neutron 
experiments by Howe et  al. (1989). By way of example the corrections for a model system 

of free atoms is shown in Figure 5.10 (Howe et  al . ,  1989) with mass of 84.2 g/mol (the 
average of Cs and C1) and assuming the LAD detectors (Howe et  al . ,  1989). 

The result of this kind of analysis is an additive correction, pine(Q, 20), to the measured 

intensities. The corrections are small since the scale in these plots is 1 0 - 3 b  sr -1 that 

compares with typical scattering cross-sections of the order 1 b sr -1. The corrections 
become more significant as the mass of the scatterer gets less. From Figure 5.10 we see that 
the corrections become significant at low-Q. In this model system S(Q,  oo) is known and the 
exact correction can be calculated and is shown as a dotted line. It is apparent from this test 
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Figure 5.10. Inelasticity corrections to the scattered intensity as a function of Q for the six detector banks 
of LAD shown in Figure 5.9 (from top left to bottom right 20 -- 5 ~ 10 ~ 20 ~ 35 ~ 58~ The dotted curves are 
the exact result from model  calculations on CsC1. The dashed curves are given by the approximate Placzek 

correction taken to first order. The solid curves are the approximate Placzek correction taken to second order. 
Notice that the corrections are most significant at low-Q and that the approximate corrections to second order 

work best at low detector angles (Howe et al., 1989). 
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that the approximate Placzek corrections to second order work well for the low-angle 

detectors but not very well at higher scattering angle. Therefore, for studying liquids of low 
atomic mass (water and organic liquids for example) low angle detectors should be 

utilized. This insight led to the building of the SANDALS diffractometer at ISIS. Bound 
atoms do not recoil so much and there is much less inelastic scattering as a proportion of 
the total scattering so this becomes less of an issue (though does not go away) in solids. 

5.3.8.6 Putting it all together. As in the case of X-ray scattering we can put together the 

specific corrections discussed here with the general corrections Eq. 5.8. In this case the 
flux, detector efficiencies and detector profiles are Q-dependent; however, by measuring an 
incoherently scattering vanadium sample we have a dynamic measurement of all these 

quantities. Thus we have 

(d s) [(N,)sc 1 
- - ~ - -  M-/ - Vtc;ca ~ Vls;scapSO d ~  Ke d ) -- ml -- pinel (5.24) 

and 

IN vc ( ) N c v,] v c a  

V/c(v);ca 

( 1 ) / pinel 
i v - mv - -v 

Vv;vcaP D dO Ked 

(5.25) 

from the sample and vanadium experiments, respectively. Note that c(v) refers to 

scattering from the vanadium container, if one was used. The primes on the N and M 
denote that the data are deadtime corrected. In general there is no sample can (or 
experimental apparatus) to subtract from the vanadium data because a self supporting solid 
V rod is used; however, these terms are retained in Eq. 5.25 for completeness. Here pinel(Q) 

is the Placzek correction for inelastically scattered neutrons as discussed in Section 5.3.8.5. 
Since vanadium is an incoherent scatterer its differential cross-section is just equal to 

(do-V/dI2)dO- (b2). Therefore, we get 

[(N)vc (Vcvca)(N)cv ]( 
DKed-- M7 - Vlc;ca ~ -  Vlv;vcapV((b2) 

1 ) 
/ pinel + my + - v  

(5.26) 

and the desired 

[ (N'/vc_ 
_(V'c~sca~(N'~ c] 

~' ( ) ((bv)+mv - m '  ~k c;ca ]~ ml] 2 /--ninel. , , !  v -'[-/"v ) Vv;vcaP _ pinel 
Vc(v);vca_] (N '  ]c(v) , s (5.27) 

V'c(,;ca ] ~ 7 /  
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As in the case of X-rays, pSdO is independent of Q and can be treated as a constant scaling 

factor that can be varied to give the right asymptotic behavior for (d~ /dO)  and S(Q). 
However, it should be noted that the common practice of using p s as a parameter in the 

data analysis for obtaining the correct normalization affects not only the scale of the data 

but the V ~ integrals too. It is not a purely multiplicative scale factor and it should retain a 

value close to the real powder density. This is discussed further in Section 5.4.2. 

5.3.9 Combining data-sets 
The data to be processed often is not contained in a single continuous data-set. It may have 

originated from more than one detector, or from multiple repeated data-runs to improve 

statistics. If the detector position and solid angle is the same between two measurements, 

by far the easiest approach is to combine data at the beginning of the analysis by summing 

together the deadtime corrected data at each Q point. The monitor counts from each run 

should also be summed. This underscores the importance of having a stable monitoring 

system. 

An approach similar to this has been utilized in time-of-flight neutron experiments 

where the detector angles were not identical, but close. In this case the data from a series of 

detectors close to the nominal average angle are summed together and the small differences 

in angle between the detectors is ignored in the subsequent corrections which are computed 

assuming all the intensity originated from a detector at the average position. Care must be 

taken to bin together data on the same A- or Q-grid. Because the tof to Q conversion 

depends on detector angle the same Q point will occur at a different tof in each detector. 

Correcting for this sometimes takes the grand title of 'time focusing'. It can be done 

electronically before the data are stored, or using software after data collection. 

In general, when the detector solid angle or position is different the data corrections and 

normalization are different. In this case the most precise approach is to propagate the data 

all the way through to a properly corrected and normalized S(Q) and to combine the S(Q) 
values to improve the statistics of the compound S(Q). The resolutions of the different 

detectors also depends on angle and is not included in the corrections described above so 

the different S(Q) values will have different resolutions and will cover different regions of 

Q-space. In this case, it is prudent to make a patchwork so that as wide a range of Q-space 

is covered but the lower resolution detectors are not contaminating data from higher 

resolution detectors. These arguments particularly apply to tof neutron experiments where, 

also, data from the most intense part of the source spectrum should be used (a rule of thumb 

is to take the wavelengths 0.2 < A < 2 A). At the same time it is of great importance to 

obtain sufficient statistics, especially at high-Q, and it is common practice to combine data 

from as many detectors as possible in this region, keeping in mind the comments above 

about resolution. When combining the data from normalized S(Q) values it is important to 

weight them according to their statistical significance. This is easy if the random errors 

have been propagated through with the data. 
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Problems arise if the corrected S(Q) functions do not overlap due to imperfect 

corrections. Small deviations are often ignored and large deviations are handled by not 

including data-banks that are too deviant. In the former case blending should be done 

carefully or it introduces noise into the blended S(Q). These issues have not really been 

adequately addressed up to now (though see Howe et al., 1989). This may change in the 

future as the next generation of powder diffractometers are expected to yield data in 

'frames' that are highly fragmented. Correcting and overlapping this kind of data to obtain 

an undistorted S(Q) will require careful attention to this point. One of the challenges in this 

regard is to match both the baseline and the integrated intensity of features using additive 

and multiplicative corrections. 

5.3.10 Terminating data 

The Fourier transform to get G(r) from S(Q), Eq. 3.1, involves an integral over Q from zero 

to infinity. However, the data are only measured over finite range, Qmin < Q < Qmax. 
Errors in G(r) due to the finite range of data, so called termination errors, have been 

discussed in Section 3.5.2. 

The low-Q cutoff rarely presents a problem. Data can usually be measured down to 

rather low values in Q so little information is lost, other than the small angle scattering that, 

according to the definition of S(Q), should not be included anyway. When low-Q Bragg- 

peaks or coherent diffuse intensity is lost (or mistakenly included as in the case of magnetic 

scattering) it gives rise to weak long-wavelength oscillations in G(r) (for example, see 

Peterson et al., 2002) which add to the residuals in modeling but rarely present a significant 

problem. As always, the only remedy for this problem is somehow to extend the 

measurement range to include the missing low-Q information. For example, in tof neutron 

experiments missing Bragg peaks can often be found in the data from very low-angle 

detectors that otherwise would not be of much interest. When all the low-Q Bragg peaks 

are recovered, or methods to extend the measurement are exhausted, it is common practice 

to take the data at Omin and extrapolate it to zero. This is better than setting the data to zero 
because, in general, S(Q) asymptotes to the value of ((f2(0)) - ( f  (O))2)/(f (O)) 2 at Q = 0. 

Thijsse (1984) suggests fitting the first 40 or so data points of Q[S(Q) - 1] with a form 

cl Q + czQ 3 and extrapolating to zero. This is equivalent to a quadratic dependence of S(Q) 
at low-Q. Note that this extrapolation scheme (or any other for that matter) relies on the 

fact that there is no measured coherent scattering at Qmin and should not be attempted if 

Qmin lies on top of a low-Q Bragg peak! 

As discussed in Section 3.5.2, the high-Q termination results in short-wavelength 

ripples in G(r). There are a number of ways of artificially reducing these spurious ripples as 

has been discussed at length. These typically use a method of damping the S(Q) with 

increasing Q so that the Fourier ringing dies out more quickly in real-space (Warren, 1990; 

Lorch, 1969; Waser and Schomaker, 1953). This always has the effect of reducing the 
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resolution of the resulting G(r) as discussed by Leadbetter and Wright (1972). An 

alternative is to use an inverse method for carrying out the Fourier transform as we discuss 

below, though these approaches also have their drawbacks. Fourier transform tipples are 

not a problem if S(Q) is measured over a sufficiently wide range that the real signal in the 

data has died out due to Debye-Waller  effects and there is really no substitute for taking 

this approach where possible. The Fourier tipples can also be included when modeling the 
data. 

The term 'termination tipples' is often used generally to describe spurious ripples in the 

Fourier transform. These often result from systematic errors in the processing giving rise to 

sharp unphysical features at low-r in G(r) that become convoluted with the termination 

function, Eq. 3.47. This should be distinguished from the narrower but more precise 

definition above. Clearly the best way to remove these is to improve the processing to 

remove the systematic errors. Iterative filtering methods have been proposed to deal with 

these and they are successful at removing tipples below the first peak (Kaplow et al., 1965; 

Narayan and Ramaseshan, 1979); however, it is not clear how successful they are at 

removing features in the region of real physical interest. Along the same lines approaches 

where data measured over finite ranges and including systematic errors are 'sampled' so 

that G(r) is only plotted at the nodes of the largest tipples (Lovell et al., 1979). Again, there 

is no substitute for measuring data over a wide range with good statistics and making good 
data corrections. 

The choice of where to terminate data is made such that Qmax is chosen where the 

signal-noise ratio becomes unfavorable. Accepting data to higher Q values introduces 

unnecessary statistical noise into the data (which becomes convoluted by the termination 

function and has the appearance of termination tipples) and terminating lower lowers the 

resolution of the measurement and results in unnecessarily large termination ripples (i.e. 

the data themselves are convoluted with the termination function). Note that the 

termination ripples from the data can be modeled accurately but the ripples from the 
correlated statistical errors cannot. 

5.3.11 Fourier transforming the data 

The most common method of Fourier transforming the data is a straightforward direct 

numerical transform. The fast Fourier transform (FFT) often used in spectroscopy is rarely 

used as it results in an r-grid that is too sparse. This is particularly true when considering 

data from crystalline materials, or other cases such as network glasses, which contain sharp 

features in G(r). The grid of points used in the FFT is limited by the density of independent 

points in G(r) that depends on the measured Q range. The point spacing is Ar ---- ~r/Qmax. 
This results in too few points defining the sharp features and resulting inaccuracies in 

extracting peak integrated intensities and model fitting. Despite the fact that it introduces no 

new information and is, from that point of view, redundant, it is common practice to 
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evaluate G(r) on a much finer grid resulting in smooth and functionally well-defined peaks 

in G(r). As we discussed in Section 4.3.5 when measuring the data the Q-space grid spacing 

should be less than the measurement resolution. This should also be taken into account 

when setting the grid (sometimes called quadrature) for the Fourier transform. It results in 

the criterion AQ <_ ,rr/rma x (Ino, 1957; Leadbetter and Wright, 1972) where rmax is a 

measure of the range in r-space where structural features are evident in G(r). For reasonably 

high resolution measurements and crystalline materials this can be rma x > 300 A requiring 
a grid spacing of AQ < 0.01 , - 1 .  

An interesting alternative approach to the direct Fourier transform is to use an 'inverse' 

method where a G(r) is constructed directly in real-space that is consistent with the 

measured S(Q) but not determined by a direct transform. This can be accomplished using 

Monte Carlo methods (Soper, 1990; Pusztai and McGreevy, 1997) or using a Maximum 

Entropy approach (Soper, 1990; Terwilliger, 1994; Petkov and Danev, 1998). The main 

drawback to these approaches is philosophical that there is no unique relationship between 

the measured S(Q) and the resulting G(r). 
From a practical point of view the Monte Carlo methods work best if the real-space G(r) 

is calculated to a point where it becomes flat which can be impractically far out in r in the 

case of crystalline materials. If this criterion is not satisfied the measured S(Q) has to be 

convoluted with the Fourier transform of the real-space box being used to determine G(r), 
thus artificially reducing the resolution of the measurement. This is a somewhat small 

problem since in practice G(r) is often only modeled over a rather narrow r-range anyway. 

On the plus side, the resulting PDFs are very clean and free of termination errors. 

The maximum entropy method has most utility in cases where the data-range is limited, 

data are unacceptably noisy, or other troublesome systematic errors are present (Petkov 

and Danev, 1998). Where possible, in such cases where the data are 'bad' the best solution 

is to repeat the measurement taking care of the problems. There is really no substitute for 

good data. 

To summarize, the choice of using a direct or inverse method for determining G(r) from 

S(Q) remains largely a matter of personal choice. Directly transformed data contain 

spurious ripples from termination effects that one must guard against misinterpreting. As 

we discuss in the next chapter, this is less likely when data are modeled over a wider range 

using physically reasonable models. In addition, it is the actual transformed data that are 

presented, including all the deficiencies of the measurement such as statistical and 

systematic errors. This allows a critical assessment to be made by the reader about the 

quality of the data that gave rise to this G(r). With an inverse transform the effects of 

experimental uncertainties, such as termination ripples, instrument resolution function, and 

inadequacies in the corrections, are removed. On the other hand the resulting G(r) is not 

unique and depends on the assumptions and method used to make the inverse transform. In 

some respect the uncertainties inherent in making a non-ideal measurement (with finite 

range, statistics and resolution) that appear as distortions to G(r) in the direct transform, 
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have not been removed in the inverse transform but are manifest in the uncertainty about 

the uniqueness of the resulting G(r). A drawback to the inverse approach is that the 

resulting G(r) does not reflect the quality and uncertainties of the measurement and it is 

therefore harder to gauge the quality of a fit with respect to the extent of the errors in the 

data. In some respect, making an inverse transform amounts to fitting the data in Q-space. 

Modeling total scattering data directly in real-space using the RMC method has been 

applied with considerable success as we discuss in the next chapter, in which case there is 

no need to Fourier transform the data at all. 

5.3.12 Instrument resolution function 

The resolution of a measurement depends on a number of factors such as detector pixel 

solid angle, incident beam divergence, sample size, diffractometer misalignment, and so on 

(e.g. see Klug and Alexander, 1968). This has the effect of broadening features in S(Q) as 

was discussed in Section 3.5.4. The effects on G(r) are rather mild and the instrument 

resolution function is often not deconvoluted as part of the data corrections, rather the 

effects are incorporated into calculated models of the PDF. This is discussed in Chapter 6. 

Attempts have been made to deconvolute data directly (e.g. see Howells, 1984, 1985; Ida 

and Toraya, 2002). Also, when fitting Q-space, or carrying out an inverse Fourier 

transform, the calculated S(Q) can be convoluted with the instrument resolution function 

before being compared with the data (Howe et al., 1989; Dimitrov et al., 1999). 

5.4. REAL-WORLD DATA ANALYSIS 

5.4.1 Data analysis programs 

A large number of programs exist for carrying out data analysis to obtain PDFs from X-ray 

sources, constant-wavelength neutron sources and time-of-flight neutron sources. An 

excellent resource for finding out about developments in data analysis is the Journal of 

Applied Crystallography, a journal of the International Union of Crystallography (IUCr, 

http://www.iucr.org), where many new programs are reported. A number of programs are 

also listed and some available for download, from the PDF home-page on the world-wide- 

web: http://www.totalscattering.org. 

Because the number of spallation neutron facilities where time-of-flight neutron 

experiments are carried out is limited, the number of time-of-flight neutron codes is also 

limited. The most popular are the ATLAS suite of programs which are maintained at the 

ISIS facility, and a GUI based program, PDFgetN (Peterson et al., 2000), that grew out of 

the IPNS GLASS package but has been considerably extended. It can now analyze data 

from virtually all of the major time-of-flight powder diffractometers in the world. PDFgetN 

is well documented and easy to use. An example of an analysis carried out using this 

package is shown in Appendix 5.4. It will run on linux, most unix, and windows platforms 
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and is available free from the authors or by visiting http://www.totalscattering.org. Two 

valuable features of this program for analyzing data from crystalline powders is the fact 
that statistical errors are propagated, allowing estimates to be made of refinement 

parameters (see the discussion in Section 5.4.2 below), and the fact that all of the data 

analysis parameters used in the data processing are stored as a header in the final PDF file. 
This is particularly important for a technique like the PDF where the 'data' that are used for 
modeling and extracting structural information are somewhat removed from the raw 

measured data by processing. Maintaining a quantitative data analysis history in the 

header of the PDF file facilitates post-facto checking and comparison of a particular 

PDF. Data analysis codes are perpetually updated. On the horizon is a reworking of the 

ATLAS routines within the ISAW project which is a JAVA based data analysis and 
visualization 'workbench'. These developments can be followed on the total scattering 
web-page. 

There are almost as many X-ray analysis codes as there are groups doing X-ray PDF 

analysis. An example of a recent code that incorporates atomic scattering factors and 
Compton factors, is PDFgetX. As with the neutron codes it propagates errors and has the 

data analysis history feature. This program was written, and is supported, by the Billinge 
group and is available from the total scattering web-page as are a number of other X-ray 

data analysis programs including IFO which uses maximum entropy based algorithms 
(Petkov and Danev, 1998). Two codes for Monte-Carlo Fourier inversion are MCGOFR 

(Soper, 1990) and MCGR (Pusztai and McGreevy, 1997; Tucker et al., 2001). Another 

useful and versatile X-ray data preprocessing package is Brian Toby's 'Swiss army knife' 

for diffraction, CMPR (e.g. see the NIST crystallography web-page http://www.ncnr.nist. 

gov/programs/crystallography/. This web-page also contains a number of useful 
applications for calculating sample absorption as a function of composition and X-ray 
energy and also neutron absorption and activation). 

5. 4.2 Optimizing data for direct Fourier transform 

The sample S(Q) is obtained after making all the corrections outlined in Section 5.3. This 

function has certain known properties, such as the high-Q and low-Q asymptotes, that 
allow the data analyst to check the efficacy of the sample corrections. When these 
functional properties are not obeyed the corrections procedure can be adjusted and 

S(Q) recalculated. The most important asymptote that must be obeyed is limQ_,oo S(Q) = 1. 
This will automatically be obeyed in the case of X-ray data analysis where this 

criterion is used to find the normalization constant for the data (Eq. 5.17). In the case of tof 

neutron analysis, in principle, it is possible to get an absolute S(Q) directly from the 
corrections. 

In this case, the usual procedure taken when S(Q) does not asymptote properly is to vary 

a parameter such as sample density until the proper asymptote is achieved. The problem 
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with this is that some corrections are multiplicative and some additive and in any given 

situation it is not clear which corrections went wrong resulting in the improper asymptote. 

Varying the sample density is a somewhat arbitrary response which produces a mostly, but 

not completely, multiplicative correction. This is not a problem if the data are to be 

modeled since a scale factor can be used in any model; however, it can present a problem 

when a model independent analysis is to be applied to the data (Chapter 6). 

Another more recent data analysis problem is simply that of handling very large 

numbers of data points that are being generated at high throughput instruments such as 

GEM at ISIS and upcoming instruments at the SNS. Arduous manual iterative corrections 

are clearly not feasible in this situation. An approach has been proposed for automating this 

'S(Q) optimization' process (Peterson et al., 2003). Constant multiplicative and additive 

constants are used to modify S(Q) according to 

S'(Q) = aS(Q)+ ~ (5.28) 

The factors a and/3 are varied in such a way as to optimize quantitative PDF quality 

criteria that give a measure of the quality of the PDF. In particular, the most useful quality 

criterion is one that empirically measures the size of ripples coming from systematic errors 

in the data in the unphysical low-r region of G(r). This empirical quality parameter is 

defined as, 

l 
" ? ' l o w  

Glow __ 0 

r2 [ G( r) -k- 4"rrrpfit]2 dr 

~i ~~ [4,rrrpfit]2dr 
(5.29) 

First a straight line is fit through G(r) from G(0) = 0 to a point rlow below the first peak in 

the PDF. It was found that best results were obtained when an r e weighting was used in the 

fit so it was not biased by large ripples at very low-r (Peterson et al., 2002). This line has a 

slope of -4"n'pfi t which serves to define Pfit. Glow is then evaluated according to Eq. 5.29. A 

least-squares regression is then applied where a and/or/3 are systematically varied to 

minimize Glow. In this way the fine-tuning of the data normalization can be automated. The 

regression can also be constrained so that a and/3 are varied in such a way that Pfit - - -  P0, the 

real sample number density. In this way a G(r) is produced with a scale factor of 

approximately one, though because of the arbitrariness of the corrections the real scale 

factor should be determined from modeling. 
If the probable source of the problem is known some more meaningful steps can be taken 

to correct the data; for example, multiple scattering that takes place first in the sample, then 

elsewhere in the apparatus. This kind of multiple scattering is not accounted for in the 

corrections. This becomes a problem for samples that have a significant amount of 

incoherent scattering. In this case the ratio of multiple scattering (that depends on the total 
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scattering cross-section) to signal (that depends on the coherent cross-section) is higher and 

it becomes more critical to correct for this source of multiple scattering to get a properly 

normalized S(Q). This effect has been noticed, for example, in scattering from compounds of 
elements with a mixture of positive and negative neutron scattering lengths such as 

the manganites (Louca, 2003). In this case a nickel standard can be measured that has the 

same total scattering cross-section (and therefore approximately the same sample/apparatus 

multiple scattering) as the sample under study. The Nickel data are analyzed using the 
imperfect corrections. The nickel data are modeled and additive and multiplicative 

corrections made to the data until a scale factor of one and the correct high-Q asymptote are 

obtained. The additive correction is presumed to come from the uncorrected multiple 

scattering which is proportional to the total sample cross-section. The additive correction 
suitable for the real experiment is then obtained by rescaling the additive constant found for 

the Ni by the ratio of the sample and nickel total cross-sections, 

Vs(bs) ) pS ! 2 

~ s -  ~Ni pNi t 2 " 
VNi(bNi) 

(5.30) 

Here it is the actual sample (powder) densities that are used. The effective sample volumes 

(Appendix 5.1) can be replaced by the real sample volumes without loss of accuracy 
provided the absorption cross-sections of the sample and data are similar. 

The approach of using a standard and modeling it to obtain a scale factor, or indeed if 

the structure of the material is known with some certainty modeling the sample PDF itself, 

is a useful way of obtaining properly normalized data. Since two independent variables 
need to be known, a and/3, two pieces of information are needed to constrain them. The 

high-Q asymptote of S(Q) is one piece of information. A convenient but imprecise 

additional piece of information is Pfit, defined above. Using the scale factor from modeled 

data as described here is another, more arduous but more reliable method, for fixing the 
second parameter. This is true regardless of whether the scale error results from multiple 

scattering or not. As we said before, if no scale-dependent model independent analyses 

(such as integrating PDF peak intensities) are to be carried out, accurate data normalization 

is less important provided sample scale factor is present as a parameter in any modeling 
(Peterson et al., 2003). 

APPENDIX 5.1. DATA ANALYSIS EQUATIONS DERIVED 

In this appendix, the general equations are derived for the scattering from a sample of finite 

dimension. These are used in Section 5.3 to determine equations allowing S(Q) to be 
obtained from a real powder diffraction experiment. 
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A5.1.1 Definitions and things 
The definition of the double differential scattering cross-section, d2tr/(dOdE), of a 

scattering sample is as follows (e.g. see Lovesey, 1984). Let Is(O, oh, Ei, Es, t) be the number 

of scattered particles per second with energy between Es and Es + dEs entering a detector 

that subtends a solid angle of dO and is positioned at an angle of (0, ~b) to the origin where 

the sample is located. This is illustrated in Figure A5.1.1. Here, and in the following, the 

parameters in parentheses, the 'argument' of the quantity, indicate what the quantity 

depends on. For example, in the present case Is(O, oh, Ei, E~, t) depends on the angular 

position of the detector, (0, th), on the energy of the incoming and scattered beams, Ei and 

Es, respectively, and in general on time, t. Then 

Is(O' qb'Ei'Es' t) -- J(-~'Ei ' t)[ d2cr(O' qS'Ei'Es) ] dg2 dE s (A5.1.1) 

where J is the number of scattering particles (neutrons or X-rays) per unit area per second 

impinging on the sample: the incident flux. 

From this definition it is clear that o-has the units of area, and this is the origin of its name: 

cross-section. The cross-section contains the structural information from the sample. It gives 

the probability of a particle (X-ray or neutron) of a particular energy (Ei) being scattered in a 

particular direction (0, ~b) with a particular energy transfer AE = Es - Ei. For example, 

Bragg scattering is elastic (AE -- 0 and Ei = Es). Pure elastic scattering can be measured if 

you have a detector with good energy resolution, dEs, that is set up in such a way as to 

measure scattered particles with the same energy as the incident particles. This amounts to 

integrating the double differential cross-section over the band-pass of the detector, W(E), as 

detector  

sample  
Y 

X r 

Figure A5.1.1. Schematic illustration of the angles used in the definition of the detector solid angle and 
the definition of the double differential cross-section. 
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discussed in Chapter 7, to yield the differential cross-section for our measurement, 

do-(0, q~,Ei) _ f d2o-(0, q~,Ei,Es) 
W(Es)dEs 

dO J dO dEs 

In the case described here W(Es) is a sharply peaked function centered around Es = Ei. The 
resulting differential cross-section contains the pattern of Bragg-peaks from the sample. 

The measured intensities depend on this underlying cross-section, the structural 
information of interest. They also depend on experimental parameters such as the incident 

flux, detector energy resolution and the detector solid angle (or the angular width of the slits 

in front of the detector). This highlights the nice feature of this formalism. A real 

experimental intensity is described (i.e. the number of counts per second into a real detector) 

in terms of an underlying scattering probability (i.e. the cross-section which is the thing we 

are trying to measure), and some experimental factors (J, dO, Es). The total scattering 

structure function, S(Q), depends on the differential scattering cross-section according to 

Eq. 2.9. We will also develop the precise relationship in more detail below. For now, it is 
sufficient to realize that the objective of the data analysis steps is to recover the coherent 

single-scattering differential cross-section, do-s/dO, from the measured intensity, Is. 

A5.1.2 Step 1: Single scattering intensity from a small volume element in the sample 
In the definition of the double differential cross-section given above it was assumed that 

the sample is small compared to the dimension from the sample to the detector. We then 

placed the origin of our coordinate system at the sample position. We now want to consider 

the sample in finer detail. We will define the origin arbitrarily somewhere inside the 
sample; for example, it could be at the center of mass. We will then consider the scattering 

from tiny three-dimensional volume elements, d ? -  dx dy dz, located at positions ? away 

from the origin. This is illustrated in Figure A5.1.2. Initially, let us consider that our entire 

sample is just a single volume element. The scattered intensity entering the detector from 
this sample element will be 

(d2 ) 
dis(0, qb, Ei,Es t,-~) -- J(-~,Ei, t ) o-(0, ~b, Ei,Es) d O d E  s 

�9 " dO dEs �9 
(A5.1.2) 

The incident flux is a function of the position of the scattering element, ~, because, in 
general, the incident beam will not be uniform. However, here we assume that the sample 

is uniform and the cross-section does not depend on position. 

If this sample element is located at some position inside a macroscopic sample (Figure 

A5.1.2) then we have to consider two effects. First is the possibility that a particle being 

scattered in this volume element at ? has already undergone a scattering event (or more 

than one) in another volume element(s) in the sample. This is called 'multiple scattering' 

and will be explicitly dealt with in the next section. In the rest of this section we consider 
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Figure A5.1.2. Schematic of the volume element dx dy dz at position x, y, z. 

only the single-scattered intensity, dis 1, reaching the detector. The second effect is that the 
incident beam has first to reach the element and then to emerge from the sample to reach 
the detector. As the beam traverses the sample, it is attenuated according to I -- I0 e -~(E)t 
where I and Io are the attenuated and unattenuated beam intensities, respectively, ~(E) is 
the linear attenuation coefficient (often, not strictly correctly, called the linear absorption 
coefficient) and 1 is the path length through the sample. In general the sample is held in a 
container. There may also be other pieces of experimental apparatus such as heat-shields 
and furnace elements in the beam. This is illustrated in Figure A5.1.3. We will refer to 
these different media as apparatus, container and sample. We can trace deterministic paths 
through the sample, container and apparatus and the absorption of an X-ray following this 
path is uniquely specified (see Figure A5.1.3). 

Consider first the absorption of the incident beam before the sample element is reached. 
The ray travels through a length/i a of apparatus that has an absorption coefficient of ~a(Ei), 
I i of sample container with absorption coefficient /.Lc(Ei) and /i s of the sample with 
absorption coefficient/~s(Ei). The same set of parameters are generated for the scattered 
beam with the superscript i replaced with s and Ei replaced with Es.The intensity of the ray 
following this path is therefore attenuated by the factor e x p { -  (/~a(Ei)lia-+-~c(Ei)/ic-k- 
~s(Ei)/is +/xa(Es)l s + ~c(Es)l~ + ~s(Es)l~)}. This is a product of attenuation factors, 
AsAcAa, one for each medium; i.e. 

a x -- exp{ - (l~x(Ei)l i + i~x(Es)lSx)} (A5.1.3) 

where x takes the values a, c or s. If there are more items of apparatus then the set of values, 
{x} can be extended as required and, in general, the intensity reaching the detector is 
attenuated by the product l-Ix Ax(?, 0, ~b, Ei, Es). The attenuation factors can be evaluated 
numerically (and sometimes analytically) if the Ixx(E) coefficients are known for the 
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Fig. A5.1.3. Schematic cross-section of a sample surrounded by sample environments. Some particle tracks 
through the sample/can/apparatus are shown as the arrowed lines. 

different media. The/xx coefficients can be evaluated if the composition and density of the 

sample are known, or they can be measured directly by carrying out an absorption 

measurement on a sample of the material of known uniform thickness. 

The number of particles per second reaching the detector that were singly scattered in 

volume element d7 at position 7 is therefore given by 

(A5.1.4) 

Continuing our simulation of the scattering experiment, we have to take into account the 

efficiency of detection of the scattered particles. Two things affect this. The first, and most 

obvious, is the quantum efficiency of the detectors themselves, ed(Es). This is the 

probability that a scattered particle of energy E~ that is incident on the detector will be 

detected. The second factor that affects whether a scattered particle is detected comes from 

the scattered beam collimating optics of the diffractometer. Ideally, these are constructed 

so that every neutron/X-ray emerging from the sample position is detected and every 

neutron/X-ray whose scattered path originates away from the sample is not. However, it is 

clear that this can complicate corrections significantly since it becomes important to know 

whether a scattering event in part of the apparatus away from the sample position should be 

included in the corrections or no{. This effect can be represented in our scattering 
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expression as a 'detector profile' (Soper and Egelstaff, 1980), D(~, 0, ~b, Es), which can take 
values between 0 and 1. If the detector element at position (0, ~b) has an unobstructed view 
of the scattering element at ~ then D(?, 0, ~b, Es) = 1. If the view is completely obstructed it 
takes a value 0. In general it can take any intermediate value. The energy dependence 
comes about because the absorption of collimator materials is energy dependent. For 
simplicity later on, we will assume that the sample is small enough that D does not depend 
on ?, the position of the scattering element within the sample. 

The expression for the number of particles per second counted in a detector at (0, 4,) due 
to single scattering events in the volume element d? at ? is then 

dlls(O, ch, Ei, Es, t,~) -- j dg2dEs (A5.1.5) 

where the explicit position, angle and energy dependencies of the respective factors have 
been suppressed for conciseness. 

This description of the measured single scattering intensity from a volume element is 
very general and it presents a road-map for how to correct measured intensities to obtain 
the differential scattering cross-section, and therefore obtain S(Q). In the next section we 
develop a similar expression for multiple scattering intensity. We will then show how the 
required scattering cross-sections can be recovered from the measured raw intensities from 
the sample, container and backgrounds. 

A5.1.3 Step 2: Double and multiple scattering from two volume elements in the sample 
We now consider the intensity reaching the detector located at (0, 4,) from particles that 
were scattered twice in the sample/container/apparatus: the double scattering. This is 
shown schematically in Figure A5.1.4. The qualitative ideas behind this are very 
straightforward but the mathematical equations quickly become dense and complicated. 
On a first reading it is recommended that the qualitative ideas behind the multiple 
scattering phenomenon are understood by studying Figure A5.1.4. It is then sufficient to 
skip to the last paragraph in this section where the magnitude of multiple scattering effects 
is discussed. A qualitative understanding of multiple scattering is all that is required to 
understand the discussion of data corrections in general. 

We derive an equation for the double scattering from two volume elements. We 
consider that the particle is first scattered in the volume element at ~1 and then 
subsequently at 72. The scattered beam from the first event then becomes the incident beam 
for the second event. It becomes clear that the complexity of the situation increases 
dramatically because the direction of the incident beam for the secondary scattering event 
depends on the positions of ?1 and 72. The angles (0, 4)) give the source-sample-detector 
angle, i.e. the global scattering angle. The angle dependence of the scattering cross-section 
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Figure A5.1.4. Reproduction of Figure A5.1.3 but with a number of different multiply scattered 
particle tracks illustrated. 

refers to the local scattering angle; the angle between the incoming and outgoing beam 
locally. For single scattering events the global and local scattering angles are the same. For 
higher order scattering this is no longer the case. 

The secondary scattering intensity reaching the detector at (0, th) can be written as 
follows: 

�9 

X 

X dJ'-~/(r2; r l ) (  H A2(~2'x 0, ~b, EZ))ed(EZ)D(-~2)dE2 dE 2 (15.1.6) 

We now write E~ as the energy of the nth scattered radiation, where n takes values 0, 1 and 2. 
Thus, E~ = Ei, and so on. Here, A~ -- exp{~x(E~)l~} is the absorption factor for the nth 
scattered beam in medium x. The factor A~ depends on the trajectory of the beam and so 
depends on the relative source-?l, ?1 - 72, and ?z-detector positions for n -  0, 1 and 2, 
respectively, and d~2t(~2; rl)  is the solid angle subtended at ?1 by the volume element d~ 2. 
There is an integral over all energies of the intermediate scattering event because only the 
initial and final energies of the radiation can be known, for example by having a 
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monochromatic beam and an energy sensitive detection scheme. Thus, all intermediate 

scattering events will be recorded at their final energy, regardless of the energy of the inter- 
mediate scattering. The equation for dl 2 has been written in a, more or less, chronological 

fashion to aid readability. The flux J is incident on the sample, this is attenuated by the A ~ 

factors before reaching the first scattering element at ~ where it is scattered through an angle 

(0 ~, 4, ~) emerging in a direction towards the second element at 72 with the probability given 

by the double differential cross-section of the element at 71. On its way to ~2 it is attenuated 
by the A~ factors. These singly scattered particles reaching the second volume element will 

be scattered through an angle (0", 4)") with respect to the incoming direction, 7 2 -  71, 
emerging in a direction towards the detector with a probability given by the double 

differential cross-section of the second element. These secondary scattered particles are then 
attenuated by the A 2 factors before reaching the detector and being detected with probability 

edD. Here we give the double differential cross-sections an ~ dependence since, in general, 

the multiple scattering could occur first in one medium then another. 
This seems enormously complicated; and the complications diverge as we go to higher 

and higher orders of scattering. However, we are dealing with X-rays and neutrons which 

are weak scatterers. In the case of X-rays, the total multiple scattering corrections are 

generally less than 10% of the single scattering intensity (though we hope to do much 

better than this !), third and higher order scattering contributes less than 1%. In the case of 

neutrons the multiple scattering corrections are significant and must be carefully corrected. 

These corrections have been discussed in considerable detail by Sears (1975). 
The multiple scattering intensity represents an annoying background signal in the data. 

It does not carry useful structural information and must be subtracted from the measured 

intensity before we can obtain S(Q). The approach is to calculate the multiple scattering 

intensity in some reasonable way and then subtract it from the measured intensity. Since 

the multiple scattering contributions are small we can make certain approximations when 

we calculate them which, even if they give a 10% error on the calculated multiple 

scattering, result in a --~ 1% error on the data. Furthermore, the multiple scattering is quite 
featureless and changes the shape of S(Q) somewhat but does not interfere with the 

structural information. In Section 5.3.6 we discussed approaches for calculating the 

multiple scattering intensity. Let us assume for now that the multiple scattering 

contribution can be evaluated in some reasonable way and proceed with the discussion 

of how to recover the differential scattering cross-section from the measured data. 

A5.1.4 Step 3: The total single and multiple scattering intensities observed 

in the detector 
The differential scattered intensity expressions, dis, we have derived up to now give the 
intensity appearing in a detector due to scattered particles being scattered in specific 

volume elements and taking a particular trajectory through the sample. The total intensity 

in the detector will clearly be the integral of the dis over all possible trajectories. 
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The total single scattered intensity in a detector at (0, 4)) will be f dI 1 where the integral 

is taken over all trajectories through the sample. For the single scattering case, this 
amounts to an integral over all volume elements. To do this it becomes useful to define a 
double differential cross-section per scatterer, 

d 2 o "t (Ei ,  Es, 0, th) 1 d 2 tr (Ei, Es, 0, th) 
= (A5.1.7) 

dO dE s p(?)d~ dO dE s 

where p(?) is the number density of scatterers in the volume element of volume d? - dx 

dy dz at position ?. This definition for dZtrt(Ei,Es, O, th)/d~Q dEs makes sense if we are 

considering volume elements that are much smaller than the macroscopic sample but 

larger than the coherence volume of the scattering. This will typically be a volume 
containing many thousands of atoms. The total single scattered intensity, I 1, detected in a 
detector of solid angle d~Q at (0, th) will then be 

l~(0, th, Ei, Es)---- d l~- -  J d ~ d E  s ax ed D d ~ d E  s p d ~  (A5.1.8) 

d2o -1 
(A5.1.9) 

Similarly, the total double scattering in the detector is given by a double integral over all 
the volume elements in the sample: 

I 2 -- f dI~ 
J trajectories 

(A5.1.10) 

A5.1.5 Step 4: The total measured intensity in the detector 
The total measured intensity in the detector at position (0, th) is given by the sum of all the 

orders of scattering, plus any other sources of counts in the detector other than scattering. 

These can include such things as fluorescence from the sample, ambient backgrounds not 

originating from close to the sample, noise in the electronics, and so on. We assume that 

these latter effects are kept to a minimum in regions of the energy spectrum of practical 

interest and can be neglected. Thus, the total measured intensity at time t in the detector, 
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I m, is given by 

1~(0, dp, Ei, Es, t ) -- ~ I n (A5.1.11) 
n 

where the sum is over all orders of scattering. 

A5.1.6 Step 5: normalizing for  the incident flux 
What is actually measured in the detector is the integrated counts: 

N(O, ~ , E i ,  Es)  - -  rim(o, qb, Ei, Es, t)dt (A5.1.12) 

where the integration is carried out over the elapsed time of the measurement. If desired, 

the average intensity can be obtained by dividing by the time of the measurement. To 

obtain the differential scattering cross-section it will be necessary to normalize the counts 

by the integrated flux. This is possible if we assume that the beam is stable in position and 
that the beam inhomogeneities are not time dependent. Thus, 

J(-~, Ei, t) = ] ( t ,  Ei)h(~, Ei) (A5.1.13) 

where ]( t ,  Ei) = Ii(t, Ei)/A is the flux averaged over the beam profile of area A. Here Ii(t, Ei) 
is the integrated counts per second in the incident beam at time t as measured by the beam 

monitor. Thus, h(~, Ei) is a dimensionless factor that contains the information about the beam 

inhomogeneities or beam profile. In this case, ~ Ira(O, ~,Ei, Es, t)dt = {im}, ~ Ii(t, Ei)dt, 
where {im}1 is the same as I m (Eqs. A5.1.8-A5.1.10) but with the Js replaced with hs. The 

integrated flux is generally measured using a beam monitor where the number of counts in 

the beam monitor, M(Ei), is proportional to the number of particles in the incident beam, 

integrated over the length of the measurement: ~ Ii(t, Ei)dt = K(Ei)M(Ei), where K(Ei) = 

1/em(Ei) is the constant of proportionality and e m is the quantum efficiency of the monitoring 
system. A monitor with a fairly low quantum efficiency is desirable so as not to attenuate the 

incident beam significantly. Clearly, if the beam is inhomogeneous, it is important that 

the beam be smaller than the monitor. The measured, flux normalized, counts (really it is the 

probability of detecting a scattered particle) is then given by 

nm(O ' qS, Ei, Es ) _ N(O, r Es) = {ira}, (A5.1.14) 
K(Ei)M(Ei) 

The number of counts in the detector, N, and the monitor, M, are known quantities and, 
therefore, so is Knm(O, oh, Ei, Es). In a particular measurement n m may only be known at 

a single value of Ei (monochromatic incident beam measurement) or at a single value of Es 
(analyzer after the sample) or integrated over all values of E s (detector with no energy 

resolution). However, in the most general case, Knm(O, 4~, Ei, Es) is known. 
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If we consider only the singly scattered counts, from Eq. A5.1.9 we see that 

Kn~ =K{Is  ~ } ' = d ~ d E  sK~ a h d~dEs  Ax Dpd7 (A5.1.15) 

1 denotes the singly-scattered normalized counts in the detector. Referring to Eq. where ns 

A5.1.10 it is straightforward to get the respective expression for the double scattered 
contribution and, by generalizing this expression, the higher orders of scattering. The total 
normalized counts in the detector are then given by 

N _ K Z  n s = K n ~ + K ~ n  s (A5.1 16) 
M 

n n = 2  

A5.1.7 The inverse problem: obtaining the double differential cross-section 
from measured intensities 
The measured normalized counts, n m, contain contributions from backgrounds and 
containers. These contributions can be estimated by making measurements of empty 

sample containers and the empty apparatus. It is a reasonable approximation to make that 

the sample, can and apparatus, are each macroscopically homogeneous. In that case the 

double-differential scattering cross-section and the density from each volume element only 

depends on the medium in which it is located. The integral over volume elements in Eq. 

A5.1.15 can then be split into 3 (or more, as needed) integrals taken over volume elements 
in each medium. Thus, the single scattering is given by 

Kn~ -- d~2 dEs Ked{p s;{w} + pC;{W} + pa;{w} } 

-- ( d2~ Ax) d? 

where 

(A5.1.17) 

(A5.1.18) 

is the contribution to the normalized single scattering counts from scattering in medium y. 

Here, and hereafter, for notational simplicity the primes on the double differential cross- 

sections have been dropped but it is understood that the cross-sections are normalized per 

scatterer. The { w } in the superscripts and subscripts refers to the set of media which are 

present in the experiment. In the sample experiment, {w} = {s, c, a}, in the container 

experiment { w } = { c, a } (no sample present) and so on where, as usual, s, c and a refer to 

sample, container and apparatus, respectively. The integral is carried over all volume 
elements in medium y. 
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For the case of double scattering we get 

pXy;{w} = Syd-~2{O[3,YSxd-~lfdfdE~Ih ( d2~ 0a 0es ) 

x d ~  dEs2 ~=0 x={w} 

which is the contribution from scattering first in medium x followed by scattering in 

medium y. This expression can be generalized to get the higher-order scattering terms, 
pxyz;abc, and so on. 

It is readily verified that the total normalized counts in the detectors from the three 

experiments are then given by 

N )sca ( ~ -- dg2 dEs 

Xgedlps;Scant_pC;SCaq_pa;Sca_k{~x ~vPXy;sca}q_.i~.pXyZ;sca}_+_... I t  xyz 

(N)Ca--d~dEsKEdlpC;Ca-+-pa;ca-]-- {~x ~v pXy;ca] --~- {~zpXyZ;ca} --~- ''' ] 

(N)a -- d O  dEs K~:d[p a;a -!- paa;a --i- paaa;a _1_...] 

(A5.1.20) 

(A5.1.21) 

In Eq. A5.1.20 x, y and z can take values of s, c and a and in Eq. 5.21 x, y and z take values 

of c and a. The terms in braces are the second and higher orders of scattering. 

The three measured intensities give us a set of three simultaneous equations containing 

three unknowns: the double-differential scattering cross-sections (d 2o-x/(d~Q dEs)) with x 

being s, c and a. In principle, the remaining parameters in the equations consist of known 

experimental variables. The equations are, however, implicit equations. There is no way of 

solving them explicitly to get expressions for (d 2o-x/(do dEs)). 

There are really two ways to proceed. The first is to simulate the experiment in a computer 

using an iterative process. The second is to make some approximations that allow explicit 

single-scattering cross-sections to be calculated. In the first approach, an initial trial is used 

for the cross-sections and the measured intensity calculated. The trial can then be updated and 

the process repeated. This can then be iterated until the calculated and measured intensities 

agree. This is a regression method; a kind of refinement method where it is the 'experimental 

data' (the relevant differential cross-sections to be precise) being refined against the raw data 

(A5.1.22) 
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rather than a model being refined against raw data. The initial trial could be the cross-section 

calculated from a model structure, or it could be the raw data themselves after a rough 

correction process has been carried out. The advantage of this approach is that the multiple 

scattering is treated in a self-consistent and accurate way. In practice this approach is 

enormously computationally intensive, even with modem high-speed computers, and in 

most cases is unwarranted; for example, if the multiple scattering is not the largest source of 

uncertainty in the measurement. As we have discussed, multiple scattering contributions 
often contribute less than 10% (and often much less than 10%). In these cases a less accurate 

estimation of the multiple scattering (or even no multiple scattering correction at all!) can 

give acceptable results. We now continue to discuss in more detail the second approach: an 

approximate method for extracting the cross-section explicitly from the raw data. 

A5.1.8 Approximate method for extracting the sample scattering cross-section 
We now explore the possibility of making reasonable approximations allowing us to solve 
the set of Eqs. A5.1.20-A5.1.22 to obtain (d2trS/(dOdEs)), the double differential 

scattering cross-section of the sample. First, we note that in most experiments, all the 

multiple scattering combined is a minor part of the total measured intensity. If the multiple 

scattering can be calculated in some reasonable way, then it can be subtracted directly from 
the data. For now, assume that it can be calculated to acceptable accuracy. 

Eqs. A5.1.20-A5.1.22 yield the following expressions for the normalized counts in our 
detectors from each of the three measurements: 

N)sca 
--~ = d O  dEs Ked {pS;SCa _.1_ pC;SCa + pa;Sca ._1__ mSCa} (A5.1.23) 

N )  ca {pC;Ca pa,Ca mCa 
--~ -- d O  dEs K8 d -k- + } (A5.1.24) 

N)a  {pa;a m a -~- -- dOdEs Ked + } (A5.1.25) 

where the p x;{ w} are defined in Eq. A5.1.19. The m{W} indicate all of the multiple 

scattering contributions which we assume to be adequately calculable. 
If we subtract Eq. A5.1.25 from Eqs. A5.1.24 and A5.1.23 we get 

(N)sca (N)a ,,ssca , csca , a sca ,,aa) m'Ca 
--~ - -M -- d O  dEs Ked + + (  - + - ma)} 

(A5.1.26) 

(N)ca (N)a ,c ca aa) mCa 
~- - ~- - d O d E  sKe d + - 4- - m a ) }  (A5.1.27) 
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Referring to Eq. A5.1.18 we see that 

d~dEs  Dpa a hAaAcd-~- d~dEs  Dpa a hAad~ 

d2o .  a ) 
= d~OdEs Dpa(fahAaAcd-~-fa hAad-~) (A5.1.28) 

a t t -d~ s Dp (Va;ac - Va;a) , (A5.1.29) 

where 

y., { w } h Ax d~ (A5.1.30) 
Y x } 

has dimensions of volume and contains all the information about incident beam 

inhomogeneities and absorption effects. It is thus represents the effective scattering volume 
of the experiment. The absorption factor Ax is defined in Eq. A5.1.3 and h describes the 

incident beam inhomogeneities introduced in Eq. A5.1.13. Referring to Eq. A5.1.29 we see 

that the cancellation would be perfect but for the correction for absorption of intensity 
scattered in the apparatus but traversing the sample can, Ac. By design we try to place 

shields, furnace elements, and so on as far as possible from the sample position. The result 

of this is that most of the apparatus scattering does not originate from close to the sample 
l position (Figure A5.1.3). The contribution to the integral Va;ac of trajectories traversing the 

sample container should therefore be small, V~a;ac -~ V~a;a, and the single scattering from 
the apparatus cancels. By the same argument the single scattering from the apparatus will 

also cancel quite effectively from the sample experiment, Eq. A5.1.27. Assuming the 

assumptions are reasonable, Eqs. A5.1.26 and A5.1.27 thus become 

-- ~ - ~ -- d~Q dE s K8 d + -k- - -  m a )  } (15.1.31) 

(--~ (--~ (--M--d~dEsK~,d{pC;Ca--I -- - m a ) }  (15.1.32) 

Some cancellation will also occur in the multiple scattering. For example, using similar 

arguments as were used above to justify canceling the single scattering from the apparatus, 

we see that multiple scattering occurring exclusively in the apparatus will effectively 

cancel in Eqs. A5.1.31 and A5.1.32. This leaves multiple scattering which occurs in the can 

or which is scattered at least once each in the container and the apparatus. The contribution 

of these events to the total scattering is expected to be very small. 
We now consider what happens when we take the difference between Eqs. A5.1.31 and 

A5.1.32. As before we will get an expression (pC;SCa _ pC;Ca) that will have the form 
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(pC;SCa __ pC;Ca) __ ( d20"c 
d-~~.s)DpC{fchAaAcAs d-~ yahAaAc d-~} 

( daOrc ) 
m c / I 

d-~-~]Ts 0 / 9  (Wc;sc a - Vc;ca ). (A5.1.33) 

It is now no longer true that these terms nearly cancel out because the absorption by the 
I / sample of intensity scattered in the container will be highly significant: Vc;sca # Vc;ca- 

However, if the effective volume integrals, V~c. { w}' can be adequately evaluated, we can 
get cancellation of the single scattering intensity from the can by scaling pC;Ca by 

/ / Vc;sca[Vc;ca. Thus, 

(,,,)s (N)sc (,,csca)(N)c ,,ssca m 
- ~  - -  ~ --  Vie;ca -~ -- dO dE s K,~ d -~ } (A5.1.34) 

where 

t I ca mr= { ( m  sca --  m a) --  (Vc;sca/Vc;ca)(m --  m a ) }  (A5.1.35) 

is the multiple scattering correction which we, a priori, assumed that we could adequately 
calculate. After subtracting the multiple scattering we are left with the normalized single 
scattering intensity from the sample alone: dO dEs Kedp s;Sca. The double differential cross- 
section for the sample is then given by 

(d2 ) [(N)sc (Vcsca)(N)c]( 
d O d E ~  M Vtc;ca m ps Wt ;scan  

1 ] - m I ( A 5 . 1  ,36) 
dO dE s K• d / 

The actual measurement is carried out with a detection system of finite energy 
resolution (or perhaps the double-differential cross-section is determined with high energy 
resolution but it is desired to integrate over a finite range of energy transfers). Thus, what is 
really obtained from the measurement is a differential cross-section, 

( des ( d2r ) 
- - ~ )  -- f d/2 dE s W(Es)dEs 

- - [ ( N ) S C - ( V t c ; s c a ) ( N ) C ] ( 1 )  m t - M  Vtc ;ca ~ p S tVs;sca D- dO Ke d - (A5.1.37) 

where W(E) is the band-pass function of the detector. 
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APPENDIX 5.2. ABSORPTION CORRECTIONS IN SOME COMMON GEOMETRIES 

A5.2.1 Summary of equations in this appendix 
In this appendix, various analytic expressions for the effective sample volume, V~c;{w}, 
introduced in Eq. A5.1.30 and used in the data analysis equations such as Eq. A5.1.37, are 
derived for some specific geometries. For convenience the derived equations are 
summarized below. 

Reflection geometry: 
No support: 

ts; s : general equation: Eq. A5.2.3 
infinitely thick sample: Eq. A5.2.4 
symmetric reflection, transparent sample: Eq. A5.2.5 
symmetric reflection, infinitely thick sample: Eq. A5.2.6 

Support above and below the sample 
V~s;sc " general equation: Eq. A5.2.7 

infinitely thick sample: Eq. A5.2.7 
thin or thick sample, symmetric reflection: Eq. A5.2.8 
thin or thick sample, symmetric and elastic scattering: Eq. A5.2.9 

V~;sc : general equation: Eq. A5.2.10 
V~c;c �9 general equation" Eq. A5.2.11 

/ / . Vc;sc/Vc;c general equation: Eq. A5.2.12 
symmetric reflection: Eq. A5.2.13 
symmetric reflection, elastic scattering: Eq. A5.2.14 
symmetric reflection, elastic, infinitely-thick sample: Eqs. A5.2.15 
and A5.2.16 

Transmission geometry: 
No support: 

V~s;s : general equation: Eq. A5.2.17 
symmetric transmission: Eq. A5.2.18 
symmetric transmission, elastic scattering: Eq. A5.2.20 

Support above and below the sample: 
Vls;sc : general equation: Eq. A5.2.21 

symmetric transmission: Eq. A5.2.22 
symmetric transmission, elastic scattering: Eq. A5.2.23 

V~c;sc : general equation: Eq. A5.2.24 
V~,c �9 general equation: Eq. A5.2.25 

! ! . Vc,sc/Vcx general equation: Eq. A5.2.26 
symmetric transmission: Eq. A5.2.27 
symmetric transmission, elastic scattering: Eq. A5.2.28 
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A5.2.2 Attenuation coefficients 

All the equations given here require accurate knowledge of the linear attenuation 
coefficients Ix(E) for the sample and container. If the sample (powder) density is known this 

can be calculated for the case of X-rays using tabulated values for Ix(E) of the different 

elements. These are generally tabulated as mass absorption coefficients, Ixp(E), (e.g. see 
probably the most complete and up-to-date compilation at http://physics.nist.gov/xaamdi 

(Hubbell and Seltzer, 2002)). The mass-attenuation coefficient of a compound can be found 

from its constituents using simple additivity: Ix~(E) -- ~,~ w~Ix~(E) where Ix~(E) is the mass 

attenuation coefficient of the c~th atom and w,~ is the fraction by weight of this element, 

w~ = c~MJ(7.~c~M~),  where ca and Ms are the concentration and molar mass, res- 

pectively. The sample linear absorption coefficient, IxS(E), is then obtained by multiplying 
by the sample (powder) density, IxS(E) -- pSIxSo(E ). If possible, it is better to measure the 

sample attenuation directly by making a flat, uniform sample (in the flat-plate geometries 

described later the samples already have this geometry). As described in Section 4.3.6, Ix(E)t 
for the sample can then be measured. The simplest way is to measure the intensity in a 
detector in the direct beam with the sample, respectively, in the beam and out of the beam. 

The flat face of the sample must be perpendicular to the beam. The log of the ratio of the 

attenuated to unattenuated intensities then gives Ixt: ln(l/lo) - -Ixt.  Thus, Ix for the sample 
can be obtained by dividing by the sample thickness, t. In the flat-plate geometry equations 

Ixt appears rather than Ix so there is no need to measure the sample thickness, provided the Ixt 

measurement was done on the same sample used in the experiment. If the detector used in the 

absorption measurement is energy resolving, such as a solid-state detector connected to an 

MCA, then Ix(E)t can be measured for each channel in the MCA by applying the equation 

ln(l(E)/(lo(E)) = -Ix(E)t  independently to each channel in the MCA. When you make the 
measurement, do not destroy the delicate detector with unattenuated direct beam! 

A5.2.3 Absorption: cylindrical geometry 

Cylindrically symmetric geometry, or so-called Debye-Scherrer geometry, is common in 

time-of-flight neutron measurements and also some X-ray measurements. In this geometry 

the sample is held in a cylindrical container (often called a 'can') that is placed at the center 

of the diffractometer perpendicular to the scattering plane defined by the incoming and 

outgoing beams. It is not generally the geometry of choice for X-ray PDF measurements 

from divergent sources such as laboratory X-ray sources because of the small sample area 

that can be illuminated compared to fiat-plate geometries. The Debye-Scherrer geometry 

is popular in powder diffraction for very high Q-space resolution measurements, for 

example, accurate lattice parameter determinations, but is less popular when quantitative 

intensity measurements are required. However, with the advent of bright synchrotron 

sources producing small, highly parallel, beams these considerations become less of a 
factor. The convenience of the Debye-Scherrer geometry may make it more popular at 
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high-flux synchrotrons in the future. Like laboratory sources, neutron beams tend to be 
weak and divergent so why is this geometry preferred in time-of-flight measurements? The 
reason is that these instruments have a wide array of detectors filling much of the scattering 
plane. The cylindrical geometry means that all of the detectors have the same view of the 
sample; it is the most natural geometry when wide ranges of solid angle are being filled 
with detectors. For this reason, this geometry will also find use in X-ray cameras using film 
(the original Debye-Scherrer cameras for example) or image plate detectors, and 

diffractometers with wide angular range 1-d detectors. 
There is no adequate analytic form for the absorption corrections in this geometry and 

the corrections must be assessed using numerical calculations. The basic approach is the 
same as was discussed in Appendix A5.1 whereby the sample is split up into volume 

elements and the absorption integrals, V I y;{w}' are determined by summing over all the 

possible paths through the sample. This procedure is made easier by taking advantage of 
the symmetry of the situation and the efficiency of the calculation can be greatly improved. 
This was first discussed by Paalman and Pings (1962, 1963). As with the discussion of 
Appendix 5.1, the Paalman and Pings approach yields the effective volume for the singly 
scattered particles and so the data must be corrected for multiple scattering first. In the 
original Paalman and Pings papers, and in many subsequent papers on the subject, the 

absorption corrected effective volume of the sample (or container, etc.), V~.{w } , is replaced 
V t by the absorption factor Ay; { w } y., { w } / f ~ h(W, H ) d W  dH where the 'integrations are 

taken over the width, W, (perpendicular to the scattering plane) and the height, H, (in the 
scattering plane) of the beam, respectively, incident on the sample and h ( W , H )  is a 
measure of the beam inhomogeneities, defined in Eq. A5.1.13. For a homogeneous beam h 

is constant and unity and ~ ~ h ( W , H ) d W  dH = WH. 
The original Paalman and Pings corrections presumed that the sample was completely 

bathed in the beam. For beams smaller than the sample diameter the approach was 
generalized by Kendig and Pings (1962) and further for inhomogeneous beams by Soper 
and Egelstaff (1980). This latter paper also describes an approach to carrying out the 
numerical integration which leads greatly improved computational efficiency without loss 

of significant accuracy. 

A5.2.4  Absorption: flat-plate reflection geometry 

Absorption corrections for fiat-plate reflection geometry can be derived fairly 
straightforwardly for the approximation of a parallel incident beam. Small corrections 
are required for a divergent incident beam, though this is rarely necessary given the 
moderate divergences of normal diffractometers and the small thickness of samples 
(especially at low X-ray energies). The geometry is shown in Figure A5.2.1. The incoming 
beam makes an angle of y with the sample surface. In the most general case the scattering 
is not symmetric and the outgoing beam makes an angle 13 with the sample surface. 
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Fig. A5.2.1. Cross-section of a fiat-plate geometry sample showing incoming and outgoing X-ray beams 
in reflection geometry. The incoming (outgoing) beam makes an angle 3/(/3) with the sample. In Eq. A5.2.1 

we consider the absorption of beams scattered at the planar volume element of thickness dt at position { below 
the sample surface. The total sample thickness is ts. 

The geometry suggests that volume elements should be selected that are parallel to the 

sample surface with thickness d t  (see Figure A5.2.1). We then consider scattering from a 

volume element at a distance { below the sample surface. The attenuation of the beam in 

the sample above the element is exp{ - / . / , s ( E i ) ~ i  } where .e i - -  ta/sin 3' is the path length 

through the sample before reaching the volume element and/xs(Ei) is the linear absorption 

coefficient of the sample at the energy of the incoming beam. After being scattered the 

scattered beam is also attenuated, this time by exp{ -/xs(Es)gs} where the absorption 

coefficient is now that of the sample at the energy, Es, of the scattered beam that, again in 

the most general case of inelastic scattering, is different from the incoming beam. Because 

of the geometry, the integral along the length and the width of the sample simply yield L 

and W, the length and width of the beam footprint on the sample. The width, W is simply 

the beam dimension perpendicular to the scattering plane. The length of the beam 

footprint, L, depends on the height, H, of the beam (its dimension in the scattering plane) 

and the incident beam angle, L - -  H/sin y. Thus, for the case of a sample without any 

support we get for the effective sample volume 

V~ WH exp - t  / /x(Ei) + d{ 
~;s sin 3' sin y sin/3 (A5.2.1) 

The integration is carried out over the direction perpendicular to the sample surface from 

the top surface (g - -0 )  to the bottom surface (g -- ts) (Figure A5.2.1). The meaning of 
the subscripts on the effective volume, V / y;{w}' are defined in Appendix 5.1 and indicate 
scattering taking place in medium y in the presence of media in the set { w }. In this case we 

are considering scattering in the sample in the presence of only the sample, Ws;s. Eq. 

A.5.2.1 is straightforwardly generalized to the cases where sample supports need to be 
considered, as laid out below. 
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The above expression can easily be generalized to the case where the beam profile, 
h(W,H), (Appendix 5.1), is inhomogeneous by replacing WH with an effective area 

(WH)' ( y, fi) -- f f h(W, H)dW dH (A5.2.2) 

The integration in Eq. A5.2.1 can be straightforwardly evaluated as 

w,-,/ 1 /f f t ( 1 - e x p - t s  ' + 
V~s;s- sin y /xs(Ei) + sm 3' sin fl 

sin T sin fl 

WH sin/3 

(/xs(Ei)sin/3 +/-ts(Es)sin 3I) 
/xs(Es) { 1 -  exp{--ts(/ts(Ei) + )}}  

sin y sin 13 
(A5.2.3) 

where ts is the thickness of the sample. If the sample is infinitely thick (in practice if 
/Xts > 5 or so) then 

WH sin/3 (A5.2.4) 
Us;s -- (/zs(Ei)sin/3 +/xs(Es)sin y) 

Furthermore, if symmetric reflection geometry is used (i.e. Bragg-Brentano geometry) 
then y = / 3  = 20/2 = 0, where 20 is the scattering angle, and 

WH ~l_exp~_ts(tzs(Ei)_+tzs(Es))~ (A5.2.5) V's;s - 
(/xs(Ei) +/~s(Es)) ( [. J J s l n  0 

A very convenient result is obtained in symmetric reflection if the sample is infinitely 
thick: 

WH 
V ~ = (A5.2.6) 

s;s (/-ts(Ei) + ~s(Es)) 

i.e. the absorption corrected effective sample volume is independent of scattering angle. 
This makes the absorption corrections in the case of angle resolved measurements in 
symmetric flat-plate geometry measurements rather straightforward. 

A note of caution is warranted here. The derivation assumes above that the footprint of the 
incident beam on the sample is smaller than the sample area. In that case the length of sample 
illuminated is given by H/sin 3'. Especially at small scattering angles the beam footprint may 
get bigger than the sample. In this region of the diffraction pattern H/sin y should be replaced 
by Is, the length of the sample. This adds an additional angle dependence to V~s. It is then quite 
important to control the alignment of the diffractometer so that you know precisely where the 
footprint exceeds the sample size. It may also be possible to measure the very low angle 
region of the diffraction pattern in transmission geometry, or asymmetric reflection, and join 
the low and high-angle portions of S(Q) before Fourier transforming them. For low energy 
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laboratory measurements in reflection geometry, obtaining agreement between low angle 
reflection and transmission measurements has been advocated as a self-consistency check 
on the quality of the data and corrections (Thijsse, 1984). In practice, for samples and beam- 
heights of reasonable dimensions the region of S(Q) that is affected is small and at very low Q 
and errors in the corrections will have a very small effect on the PDF. For example, for a 
1 c m  x 1 cm sample-face and a 1 mm beam height the footprint exceeds the sample length at 
y -  5.7 ~ which is a Q-value of 1.8/k-1 for Mo K~, in symmetric reflection. These low-Q 
data make a small contribution to G(r) because of the Q/(f)2 weighting and is rarely missed, 
except in the most accurate measurements. 

Often the sample is supported above and below with a thin tape such as a kapton foil to 
stabilize it. In this case, the various Vi~.{w} can again be evaluated fairly straightforwardly. 
These corrections also apply to thick"samples (/xts > 4 or so) with a thin cover. 

We now evaluate Vs;sc the effective volume of the sample in the presence of the foil. 
The integral is carried out as before in Eq. A5.2.1 except that the incident beam traverses 
the foil before reaching the sample. There is, therefore, an additional factor of 

{ txc(Ei)tc _ txc(Es)tc} 
exp - s iny  sin/3 ' 

where tc/sin y and re/sin/3 are the path-lengths through the foil as the beam enters and exits 
the sample, respectively. This is shown in Figure A5.2.2. Thus, 

sin y sin y 
/Xs (Es) }dt I /xc(Es)tc exp{_ /xs(Ei) + ) 

~ +  s-~n~ ) tJ '~  t '( sin), sinfl 

WHsinfl exp{-  (/zc (Ei) tc~+/Xc (Es)tc) } s ~ n ~  
(/Zs (Ei)sin fl +/xs(Es)sin 3I) sin y 

•  1 - exp{ - (/xs(Ei)tsslny- + ~s(Es)tSs-~n~ )}]" (A5.2.7) 

Figure A5.2.2. As Figure A5.2.1 but for the case of scattering in the sample when the sample is supported 
above and below by a support such as kapton foil. 
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In all these equations/~ctc is the absorption coefficient of the Kapton foil (or whatever 
the sample cover is) that can be readily measured. The result is exactly the same for the 
thick sample covered by a thin cover since in both cases the beam scattered from the 
sample never sees the back tape. 

In the case of symmetric reflection, Eq. A5.2.7 reduces to 

V/s;sc : 
WH 

(/xs(Ei) +/xs(Es)) 
exp{- ( /xc(Ei ) tc  +sin0~c(Es)tc ) }  

X 1 - exp - sm 0 (A5.2.8) 

and for symmetric geometry and elastic scattering it reduces to 

~ _ W H  exp - 1 - e x p  - (A5.2.9) 
Vs;sc 2/Xs (E~-~ sin 0 sin 0 

Similarly, the effective volumes of the scattering f r o m  the foils ,  with and without the 

sample, can be obtained analytically. V~c;sc is straightforward but somewhat complicated. 
In this case we can consider two independent contributions to the intensity contributing 

to V~: scattering from the top foil and scattering from the bottom foil. The contribu- 

tion from the top foil is the same as Ws;s with the ts replaced by tc. This is shown in 
Figure A5.2.3. The contribution from the bottom foil is like a reflection experiment on a 

transparent sample with a cover that is the top foil and the sample. The resulting 
expression gives 

Figure A5.2.3. As Figure A5.2.2 for the case of a supported sample in reflection geometry, but showing 
the case of scattering occurring within the support. 
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V~c;sc sinWH3, exp - t '  /zc(Ei)sin 3' -q ~ fl d{ 

+ e x p { - (  txc(Ei)tc + txs(Ei)ts + I~s(Es)ts + txc(Es)tc )} 
sin 3" sin/3 

X I~ exp{-tt( txc(Ei) - ~ tzc(Es) )}dtt} 
sin 3' sin/3 

WH sin/3 1 - exp -tc /~c(Ei) + 
(/xc(Ei)sin/3 +/xc(Es)sin 3') sin 3' sin/3 
x[l+exp{_(txc(Ei)tc+txs(Ei)ts+ "s'~s"s +"c '~s '~c)t  ] 

sin 3' sin/3 

(A5.2.10) 

For the experiment with the top and bottom foils present in the absence of a sample 
between, the effective volume is the same as given in Eq. A5.2.10 but without the beam 
traversing the sample. Thus we get 

[ { V~ WH sin/3 1 - exp -tc -~ - 
c;c (/xc(Ei)sin 13 +/xc(Es)sin 3') sin 3, sin/3 

sin 3' 
+ /xc(Es)tc 

sln  (A5.2.11) 

Thus, the desired effective volume ratio is 

V'c;~c 
[1 + exp{-(/xc(Ei)tc +/xs(Ei)ts 

sin 3, 
+ tzs(Es)ts+l~c(E~)tc)}] 

sin/3 
Wc;c [ 1 +  exp{-(/xc(Ei)tc +-/xc(Es)tc )}]  

sin 31 sin/3 

(A5.2.12) 

For symmetric reflection this reduces to 

V'c;~c 
1 + exp{-- (/xc(Ei)tc +/xs(Ei)ts q-/xs(Es)ts +/xc(Es)tc 

sin o )}] 
W c;c  [ 1 +  exp{-(/xc(Ei)tc +sin0/Zc (Es)tc )}]  

(A5.2.13) 

and symmetric reflection and elastic scattering 

V'c;sc _ [ 
V / c;c  

1+ exp{-(  2txc(E)tc+2txs(E)tssinO ~)}] 

[ 1 +  exp{-(  2/xc(E)tc 
sin0 )}1 

(A5.2.14) 

Note that, in the case where the sample is infinitely thick and there is no scattering from the 
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back support then Eq. A5.2.14 reduces to 

V l 1 
c;sc 

V~;c [ 1 +  e x p { - (  2/zc(E)tcsin0 ) } ]  " 
(A5.2.15) 

In this situation, the ratio 

V~c;sc -- 1 (A5.2.16) 
V~c;o 

should be used instead if, during the background run, only the scattering from the foil 
covering the sample is measured and any support under the sample is not measured. 

A5.2.5 Absorption: flat-plate transmission geometry 
In this case the geometry is similar to flat-plate reflection and so the construction of the 
integrals is also very similar. However, this time the beam exits out of the back of the 
sample and so the length of the scattered beam-path is (ts - {)/sin/3 instead of t~/sin/3 for 
the case of reflection. This is shown in Figure A5.2.4. Also, in this geometry the scattering 
angle, 20- -  nr - (y +/3) instead of 20- -  3' + /3  in the case of reflection. Making these 
substitutions we find that 

_ { tsl~s(Es)}~ts { (l~s(Ei ) /x~_(Es) ) ]dt, V~s; s WH exp - exp - {  
sin y sin/3 0 sin y sin/3 

_ WH sin/3 exp - - exp - 
(~s(Ei)s in /3-  ~s(Es)sin y) sin/3 sin y 

(A5.2.17) 

Figure A5.2.4. As Figure A5.2.1 for the case of scattering from an unsupported flat-plate sample 
in transmission geometry. 
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In symmetric transmission geometry we can take advantage of the fact that sin 3' -- sin 13 - 
cos 0 and we get 

- (  )f {tstLs(Es)t Itslt~s(Ei)t} V/s; s WH exp - - exp - 
(/zs(Ei) -/-~s(Es)) cos 0 cos 0 

(A5.2.18) 

In the case of elastic scattering this is singular. In this case we can define/ .z-/x(E~) - 
A/.z --/z(Ei) -1- A/x and take the limit of A/x ~ 0. We get 

V~s;s--( 2WH ) { ts/Xs }sinh( ts A/xs ) 
A/x exp - cos 0 2cos 0 

(A5.2.19) 

and expanding the sinh and taking the first term we arrive at 

V;s~ e x p -  
cos 0 cos 0 

(A5.2.20) 

If the sample has a supporting structure above and below it (kapton tape, for example, see 
Figure A5.2.5) the equations are modified by the fact that the incoming and outgoing beams 
traverse the foils. Thus, 

(tc/xc(Ei) WH exp - - 
sin 3' sm 3' 

Vts;sc = q- 

f~exp{_t,(~s(,Ei) _ ~s(Es) ]}d,, 
sin3, s-~n~ ), 

( ) { (tc/zc(Ei) 
_ _ WH sin/3 exp - - + 

(~s(Ei)sin 13-/xs(Es)sin 3') sin 3' 
{ { " } { ts/ts(Ei)}} t ~ ( E s )  - exp - - 

exp - sin/3 sin3, 

)}  { ts/xs(Es) t tc/xc(Es) exp - 
sin 13 sin 13 

tc/xc(Es) )}  
sin 13 

(A5.2.21) 

Fig. A5.2.5. As Figure A5.2.4 for the case of a sample supported by foils above and below. 
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For the case of symmetric scattering, 

V~s;sc- ( WH )exp{_( tc(tzc(Ei) + tzc(Es)) )} /zs(Ei) -/~s(Es) cos 0 

[ { t { ts/'ts(Ei)}] ts/zs(Es) - exp - 
• exp - cos0 cos0 (A5.2.22) 

and for symmetric and elastic scattering, 

Vls;sc _ ( WHts 
cos 0 

) e x p { - (  2/Zc (E~ +cos0/Xs (E0)ts )}. (A5.2.23) 

The effective volumes for the scattering from the support with and without the sample can 
also be evaluated. Vc;sc has two contributions; from the front and the back foil, both 
attenuated by the beam traversing the sample and the other foil: 

W /c;sc m WH exp{_(l~c(Ei)tc-+-tzs(Ei)ts)}exp{_(tzc(Es)tc)} 
sin y sin y sin fi 

x o exp - t '  /xc(Ei)sln y /xc(Es)~ ~ d t '+  slnWHy exp - /xc(Es)tCsin +fi/xs(Es)ts 

•  (/~c(Es)tc ) } Xts exp{ - t t (/z-c (Ei) "-~ (Es)) }dt' 
sin fi 0 sin 3' sm fi 

( WHsin fl )[exp{_(tzc(Ei)tc +txs(Ei)ts )} 
\ (/xs(Ei)sin 13-/xs(Es)sin y) sin 3, 

{ ( )}]{ f tc ]'re (Us) } { tc/'s }} + exp - /zc(Es)tc nt-/ts(Es)ts exp - - exp - - 
sin 13 sin 13 sin Y 

(A5.2.24) 

The result for scattering from the two foils without the sample give the same result but 
without the beam traversing the sample, thus, 

V~c;c _ ( WH sin/3 ) 
(/xs(Ei)sin/3-/xs(Es)sin y) 

• txc(Ei)tc )} + exp{-( sin/3 ) } ]  sin 3/ 
{ { } { tc/'tc(Ei)}t tc/~c(Es) - exp - - 

• exp - sin/3 sm3/ (As.e.es) 
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The desired ratio, ~ Vc;sc/Vc;c, is then 

Vc;sct_ [exp{-(txc(Ei)tc+lxs(Ei)ts)}+exp{-( t x c ( E s ) t c + l x s ( E s ) t s s i n , /  sin/3 ) } ]  

Wc;c [expf-(txc!Ei)tc)}+expf-( sin/3 ) } ]  

For the case of symmetric scattering this becomes 

Vc;sc [ e x p { - (  txc(Ei)tc+l~s(Ei)ts ) } +  e x p { - (  txc(Es)tc+txs(Es)ts ) } ]  
_ cos 0 cos 0 

(A5.2.26) 

Wc;c [exp{-( tzc(Ei)tc )} + exp{-( O cosO ) } ]  

and for symmetric elastic scattering 

Wc;c = e x p  - cos0  " 

(A5.2.27) 

(A5.2.28) 

APPENDIX 5.3. PROPAGATING RANDOM ERRORS IN THE DATA ANALYSIS 

We briefly summarize some pertinent ideas of the error propagation here. More details and 
derivations of the general equations of error propagation presented here can be found in 
standard textbooks on the subject such as Prince (1982). 

The variance of a stochastic variable, X, is defined as 

var(X) = ( ( X -  (X)) 2) (A5.3.1) 

where the angle brackets imply taking an average over multiple (unbiased) measurements 
of that variable. The Variance is therefore the mean-square deviation of a series of 
measurements from the average value. The standard deviation is the root-mean-square 

variation, 

o-(X) = x/var(X). (A5.3.2) 

In the case of our scattering experiment the statistics are Poissonian: the variance on the 
number of counts is simply the number of counts itself and o-= x/~. 

The covariance of two measurements, X and Y, is a measure of how much the 
uncertainty of one measurement depends on the result of the other and is defined as 

cov(X, r )  = ( ( x -  ( x ) ) ( r  - (r))). (A5.3.3) 

Two measurements that are statistically independent will have a covariance of zero, 
otherwise the measurements are considered to be statistically correlated. A dimensionless 
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correlation coefficient can be defined as 

cov(X, Y) 
p(X, Y) -- , (A5.3.4) 

o'(X)or(Y) 

which ranges from zero for statistical independence and values of _+ 1 for complete 

correlation or anticorrelation. 

Statistical dependence should be differentiated from functional dependence. Even when 

two observables are functionally dependent, measurements of these observables can still 

be made that are statistically independent (as is often done when the functional dependence 

is being measured or verified). The notion of covariance will become important later in the 

discussion of error propagation. 

What is the variance on a quantity, F, that depends linearly on two stochastic variables 

X and Y, i.e. F = aX + bY? Then 

var(F) = a 2 var(X) + b 2 var(Y) + 2ab cov(X, Y). (A5.3.5) 

This can easily be generalized to the case of more than two variables. This expression for 

finding the variance of a quantity that is a function of one or more stochastic observables 

can be extended to cases where the relationship is not linear in the case where the errors are 

small (or(F)/F << 1). If F is some function of P observables X1...Xp, then 

v a r ( F ) - - ?  ~ va r (X i )+2  Z 
= i j = l ( i < j )  

(A5.3.6) 

If the measurements of the observables are statistically independent then only the first sum 

is required. 

This equation results in the simple, well known, results that for F -- aX, 

or(F) = aor(X) (A5.3.7) 

and for F = aXY that 

or(F) or(X) or(Y) 
- t , (A5.3.8) 

F X Y 

if X and Y are statistically independent. 

With this knowledge in hand it is straightforward to propagate errors in the data 

correction procedure. Let us say that the number of detected particles in a particular data- 

point is Nd. The detection process is random and so the uncertainty on the number of 

detected particles is x / ~ .  We thus create two arrays, a data array which contains the set of 

counts, Nd, for each measured point, and an error array which contains , ~ .  These two 

arrays are then propagated side-by-side through the data analysis steps. Whenever the data- 

array is modified by a correction, the error array is also properly modified according to 

Eq. A5.3.6. Because we are using ~ as the initial estimate for our errors, often 
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the detector dark current and deadtime corrections are made before the error array is 

created. The reason is that the detector deadtime introduces an inefficiency in detection 

which is not random (it is highly correlated: it depends on how closely spaced in time the 

photons arrive). On the other hand, the deadtime corrected counts will obey Poisson 

statistics because the underlying scattering and detection processes are random. 

A reasonable starting assumption is that all the data-points are statistically independent. 

This is certainly true if a single detector is scanned through space and the data measured 

point-by-point. This means that all the covariance terms in Eq. A5.3.6 are zero. This remains 

true right up to the Fourier transformation step in the analysis, provided no smoothing or 

interpolation has been carried out on the data. However, the Fourier transform changes that. 

There is often confusion regarding the way in which the Fourier transform introduces 

statistical correlations. It appears an obvious fact that each point in G(r) contains 

information from every point in S(Q) because each point in G(r) comes from an integration 

over all of S(Q). However, this does not introduce statistical correlations per se. To see this 

remember that the integration is just the limiting form of a sum. Each term in the sum 

contains a stochastic observation ( [ S ( Q ) -  1]) with a coefficient (Qsin(Qr)AQ) and so, 

according to Eq. A5.3.6, the variance on G(r) is 

4 
var(G(rm)) - --~ ~.  (Qi s i n ( Q i r m ) A Q i ) 2 v a r ( S ( Q i ) )  �9 

i 

(A5.3.9) 

This is a linear expression, and even though this point in G(r) depends on the data in each 

and every point in S(Q), there is no covariance term because the data-points themselves are 

statistically independent. Thus, ~r(G(rm))= ~/Var(G(rm)) gives a good estimate of the 

random errors on the mth point in G(r) at rm. 
The problem arises when you want to consider the errors from a quantity which depends 

on a series of points in G(r). For example, perhaps you want to ask the question, what is the 

error on the integrated peak intensity for a peak in G(r)? The problem here is that 

neighboring points in G(r) are not statistically independent. This is because there is a finite 

r-space resolution to the measurement of G(r) that is dictated by the experiment: it comes 

from the finite range of Q over which the measurement was made. To a reasonable 

approximation we can estimate the resolution in G(r) as being 'n'/Omax. Based on this we 

can guess that points within a distance Ar < ,n-/Qmax of each other in G(r) will be 

statistically correlated. One approach to circumvent this problem is to evaluate G(r) on a 

grid of points separated by Ar < ,rr/Qmax and to a reasonable approximation the points in 

G(r) will be statistically independent. This approach often presents difficulties when 

relatively sharp features are present in the PDF, such as is the case in crystalline materials, 

because there are then relatively few points defining each peak and therefore a poorly 

defined peak profile. This becomes hard to model quantitatively and this approach is not 

widely used. It is also approximate in any case since it is not true that points less widely 
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spaced than ,n-/Qmax are completely correlated and those more widely spaced are 

completely uncorrelated. 

The statistical correlations between points m and n in the PDF, c o v ( G m ,  Gn), can be 

determined. Assume that an experimentally measured S(Qi) - S(Qi) + s(Qi) where e(Q) 
is a small fluctuation due to random errors in the particular measurement  and S (Qi) is the 

average S(Q) that you would get from making many measurements. Then, according to 

Eq. 3.1, the measured 

G(r) = _2 ~. Qi[S(Qi) _ 1 ]sin Qi r AQi 
"IT . 1 

2 
2 Z Q i [ g ( Q i )  - l lsinQir A Q i  + - -  Z Q ie ' (Q i ) s in  Q i r  A Q i  
"IT TIT . i t 

2 
= G(r) -+- -- ~. Qie,(Qi)sin Qi r AQi. (A5.3.10) 

"rr i 

From this we can get the variance on G(r), 

var (a )  = {(a - ~;)2) -- --  Z Qie(Qi)sin Qir AQi 
'n- i 

4 
- -  ,172 ~ .  Q 2 @ 2 ( Q i ) ) s i n 2  Qi rAQ 2 

i 

4 -I- -~ Z QiQj@(Qi)e(Qj))sin Qi r sinQjr AQi AQj. 
ir 

(A5.3.11) 

The second sum is zero s i n c e  @(Qi)e.(Qj)) - 0 because the errors on different points in Q 

are uncorrelated and averaging over many measurements will yield zero. Thus, since by 

definition, @ 2 ( Q / ) )  _ var(S(Q)) we recover Eq. A5.3.9 for var(G). 

From Eq. A5.3.6 we see that, similarly, coy(Gin, Gn) -- ((Gm - Gm)(Gn - ~Jn)), where 

Gm is the value of G(r) at the point r -  rm. Thus, 

c~ an) - 1 (  2 ~ Qie(Qi)sin Qirm AQi) ( 2 Z QJe(Qj)sin Qjrn AQj) i "IT j 

4 
- y Qirm sin Qirn aQ i 

i 

4 
+ --~ ~ QiQj(e(Qi)s(Qj))sin Qirm sin Qjrn AQi AQj. 

(A5.3.12) 

As before the second sum is always zero. However,  in this case terms in the first sum are not 

always positive as in the case of the variance, Eq. A5.3.11, because at a particular Q-point the 
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product (sin Qirm sinQirn) can be positive or negative. In fact it will periodically oscillate 

from positive to negative and taking the sum to infinity will result in a complete cancellation 

of the terms in the sum. Thus, an ideal infinite Fourier transform results in cov(Gm, G n) = 0 
and does not introduce statistical correlations between points in the PDF as we already 

discussed. However, summing over a finite range will yield a finite covariance given by 

4 N 
c~ Gn) -- ~ Z Q/2sin Oirm sinQirn Ao2i var(S(Qi)). (A5.3.13) 

i=l 

In particular, when the two points m and n are close together in rthe two sine-waves will have 

nearly the same wavelength and be in phase, producing a positive product, over a significant 

range of the sum. When the points are further apart the two sine-waves go out of phase 

quickly and terms in the sum tend to cancel (though not completely). 

Once the covariance matrix is calculated the true variance of functions of G can be 

determined using Eqs. A5.3.5 and A5.3.6. For example, the integral of a peak in G(r) is 
h simply I~ = ~'.m=l Gm Arm, where the sum runs from a point 1 below the peak to a point h 

above it, so 

h h 

vat(It)  -- ~ var(Gm)(Arm) 2 + 2 Z cov(Gm, Gn)Arm Am. (A5.3.14) 
m=l m,n=l(m>n) 

To summarize, it is possible to estimate the random errors on each point individually in 

the PDF by propagating the random counting statistics of the raw data. This gives a variance 

on each point in the PDF that is accurate. However, because the number of points in the PDF 

is arbitrary, but the amount of information in the PDF is not, we find that the errors in 

neighboring points in the PDF are correlated. From a practical point of view, points in the 

PDF which are separated by more than ~ ,rr/Qmax are statistically independent. Care must be 

taken when evaluating the errors on quantities that depend on more than one PDF point such 

as integrated peak intensities. The variance on this quantity is not given by the weighted sum 

of the variances on each of the PDF points in the sum because of the statistical correlations. 

However, in principle the covariance matrix between points in the PDF can be evaluated 

straightforwardly and using this information, statistically reliable variances can be 

determined even on functions involving more than one point in the PDF. 

APPENDIX 5.4. DATA CORRECTIONS EXAMPLE: TIME OF FLIGHT NEUTRON: 
PDFGETN 

To illustrate the process of obtaining the total scattering structure function, S(Q), and 

thence a PDF from time-of-flight neutron data we show an example of a typical data 

analysis using the PDFgetN program (Peterson et al., 2000). The analysis steps carried out 
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by the program are described in detail in Chapter 5 and Appendices 5 .1-  5.3. This program 

runs on windows, linux and most unix platforms. It is available from total scattering home- 

page (http://www.totalscattering.org/). The description reproduced here draws heavily 

from one of the tutorial examples in the program distribution. 

The data analyzed in this illustration are from a sample of La0.75Ca0.25MnO3 and belongs 

to the family of manganites exhibiting the so-called colossal magneto-resistance effect. The 

data were measured at 300 K on the Special Environment Powder Diffractometer (SEPD) at 

the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory. This instrument 

has 160 detectors that are grouped into distinct banks centered at certain angles. Data from 

detectors away from the central angle are 'time-focussed' electronically so that the same 'Q- 

value' is binned in the same 'time-channel' for all the detectors in the bank. The binning of 

data from various detectors into detector-banks is done electronically during the data 

collection. The assignment of detectors to detector banks is controlled by a user defined 

'histogram' which is chosen at data-collection time. In the current histogram the beam 

monitor is designated as bank 5 and there are 8 banks in total. The sample was filled in an 

extruded vanadium container that had an inner radius and wall thickness of 0.5559 and 

0.0127 cm, respectively. The experimental environment consisted of a closed-cycle helium 

refrigerator with an aluminum heat shield mounted. The data that were collected are 

summarized in Table A5.4.1 

The PDFgetN program has an X-windows GUI interface for straightforward data input 

and analysis. It also has embedded data such as atomic weights and neutron scattering 

cross-sections to speed up the data analysis process. Finally, one of the philosophies behind 

the PDFgetN program is that all of the parameters used to obtain a particular PDF are 

stored within the PDF file itself. This is known as the data analysis HISTORY. This is 

important for the purposes of reproducibility and accountability: given the raw data and the 

analysis parameters it should always be possible for someone to reproduce a particular 

PDF; and to see exactly what input parameters were used to get it. However, it has one 

additional advantage. The PDFgetN program can read this history information from the 

PDF file and enter it into its various input fields. These can then be modified as desired to 

Table A5.4.1. Data-sets that are used in the data analysis example 
presented here. 

Data-set Data run numbers 

Sample Sepd9085.asc 
Empty container Sepd9060.asc 
Vanadium rod; no shields Sepd9061.asc 
Empty instrument Sepd9062.asc 
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carry out the data analysis. This makes analyzing multiple similar data-sets (for example a 

temperature series) very straightforward because the great majority of the inputs do not 

change from one data-set to another. 

The user first selects the correct template for the particular diffractometer that was used 

to collect the data; in this case SEPD. The experimental information is then typed into the 

various fields as shown in Figure A5.4.1. Note that no instrument background is subtracted 

from the vanadium rod. This is because SEPD has inherently a very low background that is 

negligible for the vanadium rod measurement which is carried out with no heat-shields in 

place. A background from the empty instrument is measured for the data collected with 

heat-shields in place. Data from the sample are not smoothed. By default the empty 

container, vanadium rod and sample background will be smoothed using a Savitzky-Golay 

filter of zeroth order. This is done to improve statistics on the assumption that all the 

backgrounds are slowly varying and smoothing them will not introduce significant 

distortions. Smoothing can be turned off if desired. The tiny residual Bragg peaks are also 

removed from the vanadium data by default. The severity of smoothing, and the smoothing 

protocol, are controlled by varying the 'smoothing parameters' fields. 

Once the experimental information is filled in the sample information is entered, as 

shown in Figures A5.4.2 and A5.4.3. The chemical elements in the sample are selected 

from the pop-up periodic table window (Figure A5.4.2) and the chemical formula entered 

Figure A5.4.1. Experimental information window of PDFgetN. Note the 'Create S(Q)' and 'Plot' buttons. 
Once essential information, such as sample composition and dimensions, is entered, S(Q), and G(r) 

are just the click of a button away. 
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Figures A5.4.2. Window in PDFgetN for selecting chemical elements present in the sample. 

from the keyboard. The neutron scattering cross-sections that will be used automatically 

appear as shown in Figure A5.4.3. All these values can be edited manually in the history 

file if necessary. The sample powder density is the weight of the sample divided by its 

volume (i.e. the density of the loose powder). This is not used explicitly anywhere in the 

analysis and may be left blank. Instead, the density is treated like a parameter that is used to 

normalize the data and takes the name 'effective density'. This field has to contain a value 

Figure A5.4.3. Sample information window of PDFgetN. 



210 Underneath the Bragg Peaks 

Figure A5.4.4. Detector-bank information in PDFgetN. 

for the program to run and a good initial value is the true sample (powder) density, if it was 

measured, or alternatively 0.5 times the theoretical density of the sample. 

Next, information about the detector histogram must be entered. This window is shown 

in Figure A5.4.4. This histogram information is contained in the header of the data runfile 

and can be automatically obtained by running a preliminary analysis (clicking the 'create 

S(Q)' button) which creates an intermediate file containing the detector bank information. 

PDFgetN will then ask the user if this information should be accepted and will 

automatically load it. 

With the experimental information all entered, it is now possible to proceed with the 

analysis by clicking 'create S(Q)'. The resulting S(Q) is calculated for each bank. When the 

program finishes, this information can be viewed using the interactive plotting capability, 

as shown in Figure A5.4.5. The user can zoom in on different parts of the PDF by defining 

regions using the mouse. If the data are not properly normalized; i.e. the S(Q) values do not 

approach unity at high-Q, the effective density can be modified and the analysis rerun. If 

the S(Q) values from different detector banks do not properly line up with each other, then 

the data can be scaled bank by bank, or a constant added to a bank, to line the data up. Bank 

by bank variations require corrections of less than 5% in general and a larger correction 

may indicate a problem with the data in one of the banks; for example a noisy detector. In 

this case, banks can be eliminated from the analysis or raw data can sometimes be 

reprocessed with particular detectors eliminated from the bank. Remember to reprocess the 

vanadium data, used for normalization, in the same way even if the detectors are all good in 
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Figure A5.4.5. Plot window for PDFgetN here showing S(Q) from six detector banks. The plot can be zoomed 
by selecting regions using the mouse. By positioning the cursor and clicking the mouse it is also possible 

to get coordinates. 

the vanadium data-set! S(Q) values that slope at high-Q often indicate problems with the 

background/empty can subtraction; it might be necessary to change some of the can 

parameters or scale the background. 

Once satisfied with the result, the data can be blended. The range of data to be accepted 

from each bank is specified in the bank parameters. The bank by bank S(Q) values are then 

combined into a single S(Q) to improve the overall statistics. The result is shown in Figures 

A5.4.6 and A5.4.7 in the form of S(Q) and the reduced structure function Q[S(Q) - 1], 

respectively. 

The reduced structure function, Q[S(Q)- 1] oscillates around zero at high-Q. The 

signal-noise ratio is decreasing with increasing Q in S(Q) because of the Debye-Wal le r  

factor. This effect is exacerbated in the reduced structure function, Q[S(Q) - 1 ] because of 

the Q-weighting which multiplies the high-Q region by Q which can be as much as a factor 

of 50! The data are terminated at a value of Qmax that is chosen depending on the signal- 

noise ratio in the reduced structure function. This underscores the importance of getting 

good statistics in the high-Q region of the data. In this case a Qmax of 24 A-1 was chosen. 

The data are then Fourier transformed by clicking the 'create G(r)' button resulting in the 

PDF shown in Figure A5.4.8. 
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Figure A5.4.6. Blended S(Q) in the PDFgetN plot window. 

Figure A5.4.7. Same as Figure A5.4.6 but plotted as the reduced structure function, Q[S(Q) - 1]. 
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Figure A5.4.8. Reduced pair distribution function, G(r), from the data shown in Figures A5.4.5-A5.4.7, shown 
in the PDFgetN plot window. 

These data from a manganite sample are particularly challenging because of the 
relatively weak coherent, and strong incoherent, scattering of the sample due to the negative 
scattering length of manganese. This results in significant backgrounds relative to the 
coherent scattering intensity so that imperfections in the corrections have an exaggerated 
effect. The negative scattering length of manganese is evident by the observation of M n - O  

and M n -  (La,Sr) peaks which are negative (for example, the peak at 1.9 ,~). The imperfect 
corrections are apparent because the function G(r) does not decrease linearly from the origin 
with the slope of - 4-rrp0 in the region below the first peak at 1.9 ,~ as expected theoretically. 
In fact, the deviations from this behavior are quite dramatic (and much worse than observed 
for typical data-sets on better behaved samples). Nonetheless, the data in the structural 
region are still of high quality. This is borne out by model fits to the data. 
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Chapter 6 
Extracting Structural Information from the PDF 

6.1. INTRODUCTION 

The experimentally derived PDF is an absolute function: the data have been properly 

normalized and the absolute, rather than the relative, intensities of the peaks are 

meaningful. A great-deal of structural information can therefore be deduced directly from 

the data without resorting to models. Ultimately, the most information is obtained from the 

PDF by structural modeling: calculating the PDF from structural models and comparing 

them to the data. The structural origin of different features of the PDF function can be 

understood by careful consideration of the equations which define the PDF (Section 3.1). 

This is explicitly described in Section 6.2. Different approaches for modeling the data 

using regression techniques are described in Section 6.3. Finally, in Section 6.4, we 

describe some of the more subtle information that is present, and can be extracted from the 

PDF, by careful analysis. 

6.2. DIRECT INFORMATION 

6.2.1 The P D F  f r o m  a structure 

The relationship between an atomic structure (i.e. an arrangement of atoms in space) and 

the PDF was discussed in Chapter 3. We reiterate this argument here since it is highly 

pertinent to the discussion of obtaining structural information from the PDF. First, assume 

we have a model for our sample that consists of a set of N-atoms at positions r,, with respect 

to some origin. Intuitively, we obtain the PDF in the following way. We first choose an 

atom at random and place the origin of our space at the position of that atom. We then 

systematically find every other atom in the sample and measure the distance from the 

origin-atom to that atom. Each time we find an atom we place a unit of intensity at the 

position rm -- Irml on the axis of our function R(r).We continue this until we have found 

every atom in the sample. We then move the origin of our space to another atom and repeat 

the process adding intensity to the same R(r) function. This is systematically repeated until 

every atom in the sample has had its turn at the origin. To keep R(r) as an intrinsic function 

(independent of sample size) it is divided by N to normalize it. If all the atoms in the 

sample are of the same chemical species, this is the end of the story. To take into account 

the different scattering powers of different chemical species, we multiply the unit of 

intensity for each atom-pair by bmbn/(b) 2 where b i is the scattering length of the ith atom. 

219 
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Mathematically, this can be expressed as in Eq. 3.5: 

1 bmbn 6 ( r -  (r. - rm)). 
R ( r ) -  ~ ~m~ (b) 2 (6.1) 

To understand how this works in practice it is useful to consider a simple example. Let 

us consider a crystalline single-element material; for example, the neutron scatterers' 

favorite, nickel. A typical neutron sample is a fine powder which can be as much as 10 g. 

Such a sample contains --~ 1023 atoms. To properly calculate R(r) we would therefore need 

to carry out a double-sum over this many atoms; clearly impractical. Two things help us in 

practice. First, we are generally only interested in calculating R(r) over a relatively narrow 

range or r, say 20 ,~. Thus, we still need to put the origin on each of the 1023 atoms in turn, 

but the second sum need only be taken over atoms that lie within 20 ,~, of the origin-atom. 

Second, the material in question is crystalline. In this case the total sample is made up of 

many equivalent unit cells which are periodically repeated in space. In this favorable 

situation we need only place the origin on each atom in the unit cell since the equivalent 

atom in all the other unit cells has exactly the same atomic environment. This is now a 

computationally tractable problem: a double sum where the first sum is taken over the 

atoms in the unit cell (<  100 typically) and the second sum over all atoms within rmax 

of the origin atom where rmax is the maximum extent over which the PDF is to be 

calculated. 

6.2.2 Direct information from the PDF 
6.2.2.1 Atom-pair separation from peak positions. It is clear from this description that 

the PDF is a heavily averaged representation of the structure. First, directional information is 

lost since we consider only rn - rm and not r~ - rm. Second, it is a linear superposition of the 

local environments of many atoms; more than 10 20 in fact! How can such a function contain 

any useful information at all? The reason is that, especially on very short length-scales, the 

possible environments of particular atoms are very limited. In Ni for example, all the atoms 

have the same nearest-neighbor distance, rn~, if we neglect thermal vibration. There will be 

no intensity in R(r) for r < r~  and a sharp peak at r~,,. This behavior is very general and true 

even in atomically disordered systems such as glasses, liquids and gasses. The second 

neighbor distance is generally less well defined, the PDF peak will be broader, but will still 

be apparent even in disordered materials. In crystals, because of the long-range order of the 

structure, all neighbors at all lengths are well defined and give rise to sharp PDF peaks. The 

position of these peaks gives the separations of pairs of atoms in the structure directly. 

6.2.2.2 Coordination number from peak integrated intensity. It is clear from Eq. 3.5 

that if a well-defined PDF peak can be observed, we can determine the coordination 

number of the origin atom by integrating the intensity under that peak. The correlation 
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function which yields the coordination number directly by integration is R(r) = 47rr2p(r). 
This is related to G(r), the function obtained directly from the Fourier transform of the 

data, by R(r) = r[G(r) + 4"rrrp0]. In the case of crystalline Ni there are four Ni atoms in the 

unit cell (fcc structure). Each nickel ion has 12 neighbors at 2.49 ,~ (Wyckoff, 1963). When 

we construct our PDF we will therefore place 48 units of intensity at position r -  2.49 ,~ 

(the weighting factor, bmbn/(b) 2, is unity since there is only one kind of scatterer) and 

divide by N -- 4 since we put four atoms, respectively, at the origin. Thus, integrating the 

first peak will yield 12 which is the coordination number of Ni. The same information can 

be obtained from multi-element samples if the chemical origin of the PDF peak, and 

therefore the weighting factor, is known. If, as is often the case, PDF peaks from different 

origins overlap this process is complicated. Information can be extracted by measuring the 

chemical specific differential or partial-PDFs directly (see Chapter 3) or with less certainty 

by fitting the peaks with a series of Gaussian functions. As we discuss later, full-scale 

structural modeling largely overcomes the problem of PDF peak overlap, at least in 

crystalline materials. 

6.2.2.3 Atom-pairprobability distribution from thepeak-shape. The PDF is made up of 

a sum of well-defined delta-functions. In the real material (and therefore in the 

experimentally derived PDF) the sums are taken over the entire sample. Atomic disorder in 

the form of thermal and zero-point motion of atoms and any static displacements of atoms 

away from ideal lattice sites give rise to a distribution of a tom-atom distances. The PDF 

peaks are therefore broadened resulting in Gaussian shaped peaks. 1 The width, and shape, 

of the PDF peaks therefore contains information about the real atomic probability 

distribution. In the case where a probability distribution is non-Gaussian, for example, if 

the atomic potential is multi-welled and atoms in the solid occupy each well in some 

disordered fashion, the PDF will reflect this and in principle this information can also be 

extracted from the PDF by an analysis of the PDF peak-shape. 

To summarize, there are three independent pieces of information which are contained in 

a PDF peak: its position gives the average separation of the pair of atoms in question; its 

integrated intensity yields the coordination number of that pair of atoms; and the width and 

shape of the peak gives the underlying atomic probability distribution. 

6.2.3 Examples 
6.2.3.1 Peak position. The peak position yields bond-lengths directly. One clear 

example where this has proved to be useful is in understanding the local atomic structure of 

semiconductor alloys, as introduced in Section 1.2.1. In In l-xGaxAs the metal-ion 

1 The PDF peaks, even from Gaussian atomic probability distributions, are actually slightly non-Gaussian. 
However, the deviations from Gaussian are negligibly small as discussed in Section 6.4. 
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sublattice contains a random solid-solution of indium and gallium atoms which have very 

different covalent radii. The material on the whole forms a long-range-ordered crystal 

structure. However, the In/Ga bond-length obtained from the average crystal structure 

bears little resemblance to the real, local, bond lengths in the material: locally, In-As and 

Ga-As  pairs have bonds that are close to their length in the endmember compounds. The 

two distinct bond-lengths (In-As and Ga-As)  are different by --~0.14 ,~ and can be 

resolved in a high-resolution PDF measurement. Then, by fitting two Gaussian functions 

(suitably convoluted with a Sinc function to account for termination effects in the Fourier 

transform), the evolution of the local bond lengths with alloy composition could be directly 

elucidated (Petkov et al., 1999). This is shown in the so-called 'Z-plot' in Figure 1.3. The 

inset shows the nearest-neighbor PDF peak which is clearly resolved into two features. The 

Gaussian fits are also shown. The main panel shows the evolution of the InAs and GaAs 

bond lengths with alloy composition obtained from these peak fits. Also shown are earlier 

results of XAFS (Mikkelson and Boyce, 1984) who were the first to observe this 

phenomenon experimentally. There is excellent agreement between the XAFS and the 

PDF data. Beyond the Z-plot, the PDF data have allowed different structural models for the 

local structure of the semiconductor alloy to be differentiated (Jeong et al., 2001; Peterson 

et al., 2001). 
Another elegant example of the use of the PDF to measure local bond-lengths directly 

was demonstrated by Dove et al. (1997) in crystalline phases of silica and introduced in 

Section 1.2.5. The low temperature crystalline form of silica is a-quartz. It is made up of 

corner shared SiO4 tetrahedra with a physically reasonable S i - O  bond-length of 1.61 ,~ 

and a S i - O - S i  bond angle of 144 degrees. As temperature increases, the S i - O - S i  bond 

angle increases and the S i - O  bond length decreases. The sample then transforms first into 

f3-quartz, HP-tridymite and then 13-cristobalite on further heating (Keen, 1998). The latter 

two phases both have S i - O - S i  bond angles of 180 ~ known to be chemically unfavorable, 

and an unphysical S i -O  bond length of 1.54 ,~. Large thermal factors are also seen in the 

crystal structure refinements. An analysis of the PDF from these materials immediately 

shows (Figure 1.11) that the local S i -O  and O - O  bonds are significantly longer than those 

obtained from the average crystal structure. Furthermore, as a function of temperature the 

S i - O  bond length determined from the PDF increases very slightly even though the 

average value obtained crystallographically is smoothly decreasing as the phase transition 

to 13-cristobalite is approached (Tucker et al., 2000). As in the semiconductor alloys, in 

silica the O ions do not lie on lattice sites of the crystallographic model but are displaced 

away from them in a disordered way. These examples illustrate convincingly, and in a 

model independent way, that the PDF contains additional information beyond the average 

structure in crystalline materials and that this information can be reliably recovered 

experimentally. Detailed modeling, as we describe later in the chapter, reveals a great-deal 

of additional information beyond this model independent analysis. 
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6.2.3.2 Integrated intensity in PDF peaks. The integrated intensity under a PDF peak 

yields the coordination number of that a tom-atom correlation (the number of neighbors at 

a specific distance). This type of analysis is widely used in studies of glasses (Waseda, 

1980); however, we will give two examples from partially crystalline samples. The first 

example is from disordered nanoporous carbon. Some of the earliest ever PDF studies were 

carried out on carbon blacks by Warren (1934). There is currently renewed interest in 

disordered carbons because of their potential uses for storing lithium in battery 

applications. A number of recent studies use the PDF method to study the local structure 

of disordered carbons (Claye and Fischer, 1999; Petkov et al., 1999). In the latter study 

nanoporous disordered carbon is made by pyrolyzing poly furfuryl alcohol by heating it in 

an inert atmosphere. This produces a carbonaceous product which is more or less 

disordered depending on the temperature of pyrolysis. A PDF study showed that a 1200~ 

treatment produced almost perfect graphene sheets; an 800~ treatment introduced 

significant disorder into the sheets in the form of greater sheet fragmentation and non-6- 

membered rings. A 400~ treatment resulted in highly distorted carbon planes bearing 

little resemblance to graphitic material and more resembling the alcohol starting material. 

The data PDFs are shown in Figure 6.1. Two key pieces of evidence revealed the nature of 

the disorder in the 800~ sample. First, the integrated intensity of the first C - C  peak fell 

from having 3.0 neighbors in the 1200~ sample to having 2.6 neighbors in the 800~ 

sample. Second, the third PDF peak, coming from the C - C  bond diametrically across 

the six-member ring in graphite, became broader and lost intensity in the 800~ sample. 

This suggests the loss of, and an increased distribution of, third-neighbor correlations, 
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Figure 6.1. PDFs from disordered carbon made by pyrolyzing poly furfuryl alcohol at different temperatures 
(Petkov et al., 1999). These PDFs were created by Fourier transforming the S(Q) data shown 

in Figure 9.16(b). 
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at this position diagonally across the ring; a tell-tale indication for the presence of 

higher-membered rings in the structure (Figure 6.1). The graphene sheets are thus 
becoming fragmented and higher neighbor tings are being introduced. In a TEM image the 

sheets indeed appear more curved in this sample; a by-product of the presence of non-6- 

member tings. The near-neighbor C - C  peak in the 400~ sample when integrated 

indicated 1.9 neighbors. This number is somewhat uncertain because this peak is not fully 

resolved in the structure; however, it is a clear indication that the graphene sheets are 

highly fragmented and even that the structure is closer to the polymeric starting material 

(2 carbon-carbon near neighbors) than the graphitic product. Again, additional 

information was elucidated from modeling, but significant knowledge of the structure 
could be deduced directly from the PDF. 

Another example of the study of the integrated intensity of PDF peaks is the search for 

Jahn-Teller distorted MnO6 octahedra in Lal-xSrxMnO3 (Louca and Egami, 1999). Mn 3+ 
is a Jahn-Teller ion: MnO6 octahedra containing Mn 3+ will spontaneously elongate 

(4 short M n - O  bonds and 2 long bonds) to lower the electronic energy of the system. On 
the other hand, Mn 4+ is not a Jahn-Teller ion; MnO6 octahedra containing Mn 4+ will 

remain regular (six equal M n - O  bonds). As the strontium content of La~-xSrxMnO3 is 
increased, the number of Mn 4+ species increases. Louca et al. (1997) showed that the 

integrated intensity in the low-r portion of the PDF double-peak coming from the M n - O  

bonds increased linearly with doping (Figure 6.2). This is because, locally, Mn 4+ and 

Mn 3+ containing octahedra are coexisting and the number of short M n - O  bonds is 

smoothly increasing from four in the case of fully Mn 3+, to six in the case of fully Mn 4+, 

containing material. Interestingly the slope of the curve of number-of-short-bonds vs. 

strontium content is different at low and high temperature suggesting a change in the 
degree of carrier localization as a function of temperature. 

6.2.3.3 PDF peak width. The width of PDF peaks reveals information about the static 

and dynamic disorder of atoms involved in the pair. Measuring the peak width as a function 

of temperature gives information about the Debye temperature of a bond; the width as a 

function of atomic separation yields information about correlated atom dynamics which, in 

turn, reveals information about the underlying atomic potential; the width as a function of 

doping gives information about doping induced disorder; and so on. In the manganite 

system Lal-xCaxMnO3, sister to the manganite system described in the previous 
paragraph, a sharp deviation from canonical Debye behavior of the PDF peak width with 

temperature was observed (Figure 1.10) (Billinge et al., 1996). This deviation correlated 

with the metal-insulator transition temperature in this material, which gave strong 

evidence for the appearance of lattice polarons and carrier localization at this phase 

transition. In the figure the peak width is not plotted directly but the PDF peak height is. 

The width can be extracted by fitting Gaussian functions or more commonly Gaussians 

convoluted with a Sinc function to account for termination effects. However, because the 
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Figure 6.2. The number  of short M n - O  bonds per Mn ion for Lal-xSrxMnO3 determined by integrating the PDF, 

NMn-O, presented as the fraction of the Mn site without JT distortion, r / =  (NMn-O -- 4)/2, as a function of x 

for T = 10 and 300 K (above Tc), except for x ----- 0.3 (320 K), 0.4 (350 K). The line named small polaron line 

connects NMn-O = 4, 77 -- 0 for x = 0 and NMn-O -- 6, 7/--  1 for x = 1 (Louca et al., 1997, 

Egami  and Louca,  2000). 

number of neighbors is constant the integrated area under the peak is invariant and the peak 

height, extracted directly from the data, gives the inverse peak width. This can often give a 

more accurate determination of the peak width, especially when plotting trends such as 

temperature dependence, than carrying out Gaussian fitting. 

The PDF peak width as a function of atomic separation, r, has been studied in a metallic 

and a semiconducting system (Jeong et al., 1999). Peak widths were extracted by fitting 

Gaussians convoluted with Sinc functions. The peak width increases with r following a 
curve with a (1 - 1/r 2) dependence (Figure 6.3). The sharpening of the low-r peaks arises 

because in a solid the neighboring atoms tend to move in a correlated fashion because they 

are directly bonded to each other. The strain field around a misfitting impurity in an elastic 

continuum is expected to fall off continuously as 1/r 2 which explains why the correlations 

also die off somewhat continuously as they do. Interestingly, the peak widths deviate from 

the smooth curve and potential based modeling shows that these deviations are real. 

Certain directions in the solid (in the semiconductor alloys it is the (110) directions) are 

more stiffly bonded and displacement correlations extend further in these directions 

leading, for example, to the anomalously sharp fifth peak in the InAs PDF. 
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Figure 6.3. r-Dependence of the PDF peak width. Peaks at low-r become sharpened (o" becomes smaller) due to 
correlated atomic motion. (a) InAs and (b) Nickel were measured using high-energy X-rays at CHESS. Also 

shown is a correlation parameter (see Jeong et al., 1999 for the definition) that is a measure of how correlated 
is the atomic motion. For near-neighbor atoms in InAs the motions are 80% correlated. 

The width of the C u - O  bond as a function of doping in La2-xSrxCuO4 has also been 

used to probe the homogeneity of the electronic state in this high temperature super- 

conducting material as described in Section 1.2.3 (Bozin et al., 2000). 

6.3 MODELING THE PDF 

In the previous section, we described how structural information can be obtained in a 

model-independent way from the PDF. In practice, the most information, and the most 

quantitatively reliable information, is obtained by fitting structural models to the data. The 

method for calculating a PDF from a structural model was discussed in detail in Section 

6.2. Once the model-PDF has been calculated it can be compared to a PDF derived from 

data to assess how good the structural model is. At this point it is typical to quantify the 

'goodness-of-fit '  with a suitably defined residuals-function. Two different models can then 

be compared with each other by comparing their goodness of fit. The model with the lower 

goodness-of-fit parameter is the better model; the difference between the models is 

significant if the difference in the goodness of fit exceeds the uncertainty in this parameter 

coming from the random errors in the data. This trial-and-error approach to finding a good 

model can then be automated using some regression technique where model parameters are 

allowed to vary, subject to certain user-defined constraints, and these variations continue 

until a minimum is found for the goodness-of-fit parameter. 
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There are two different philosophies used for calculating models and there are a wide 

range of different approaches used for the minimization procedure. The first approach for 

calculating the model is to specify the smallest possible unit cell that explains the structure 

and to calculate the PDF from this unit cell. Distributions in the atomic distances are 

accounted for by convoluting the resulting calculated PDF with Gaussian functions. The 

basic unit cell is periodically repeated in space as far as is necessary to calculate the PDF to 

the required rmax- The other basic approach is to model the sample as a large box of atoms 

which is much larger than the range over which the PDF is to be calculated. In this approach 

the atomic distributions are either explicitly included in the distribution of atom positions in 

the box, or if the box does not contain enough atoms to give smooth distributions the 

convolution approach can also be used. Often, both approaches of accounting for the atomic 

disorder are used together. 
It should be pointed out that once a structural model has been defined, both the 

scattering in Q-space and the PDF can easily be calculated. Since the PDF is simply the 

Fourier transform of the total scattering structure factor, S(Q), either approach should yield 

the same information and there is often debate about which approach is superior. Although, 

in principle, it is true that S(Q) and the PDF contain the same information there are some 

pertinent differences between the two representations and it turns out that, from a practical 

point of view, the two representations lend themselves to being modeled in different ways. 

Depending on the question being asked, the answer is often more accurately determined in 

one representation or the other. Even though in principle you could, you would not attempt 

to change the oil on your car from under the hood, or change the spark plugs by lying under 

the car. In the same way, the total scattering yields its various pieces of information more 

readily either in real- or reciprocal-space depending on which piece of information is being 

sought. In the following sections we describe different modeling approaches in more detail 

and this discussion will be made more concrete at this point. 

6.3.1 Real-space Rietveld analysis 

The Rietveld full-profile fitting method (Rietveld, 1969) for extracting structural 

information from crystalline powder diffraction patterns has revolutionized the use of 

powder diffraction for structure studies (Young, 1993). Whilst powder diffraction is not the 

method of choice for determining new structures (although it can be, and is, used in certain 

circumstances), its simplicity and the ease of making samples, collecting and analyzing the 

data, make it by far the most widely used method for refining accurate structural 

parameters for a given sample under varying conditions. Furthermore, because the 

problem of extinction (a dynamical scattering effect) is much smaller in powder than 

single-crystal diffraction, once the gross-features of a structure have been determined from 

single-crystals, the quantitative fine details are often determined by crushing up the single- 

crystal and doing a powder measurement! 
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The Rietveld method (Rietveld, 1969) was motivated by the fact that in a powder 

measurement many of the Bragg-peaks are overlapped especially in the high-Q (small d- 

spacing) region of the pattern. Apart from the inherent loss of directional information in a 

powder measurement, this fact severely limited the set of data-points that could be 

obtained by integrating the intensity of separated Bragg-peaks to obtain the crystal- 

lographic structure factors needed for crystal structure solution. The Rietveld approach 

was to calculate the complete set of crystallographic structure factors, and therefore the 

Bragg-peak intensities and positions, for a trial structure. These were then convoluted with 

profile functions to account for the instrument resolution and sample-dependent peak 

broadening effects. The intensities were modulated with experimental effects such as 

absorption, extinction, incident flux, background intensities and so on and sample 

dependent effects such as Debye-Waller  factors. In this way the entire experimental data- 

set was simulated and compared to the measured one. All of the above mentioned effects 

are parameterized and the parameters are allowed to vary until a best-fit is obtained, 

traditionally, using a least-squares approach. The sample dependent parameters thus 

derived include the unit cell parameters (unit cell lengths and angles), atomic positions in 

the unit cell expressed in fractional coordinates, anisotropic thermal ellipsoids for each 

atom and the average atomic occupancy of each site. 

This approach has been applied, in exact analogy, to the PDF (Proffen and Billinge, 

1999; Billinge, 1998) in the program PDFFIT. We highlight here the similarities and 

differences with conventional Rietveld. The main similarity is that the model is defined in a 

small unit cell with atom positions specified in terms of fractional coordinates. The refined 

structural parameters are exactly the same as those obtained from Rietveld. The main 

difference from conventional Rietveld is that the local structure is being fit which contains 

information about short-range atomic correlations. There is additional information in the 

data, which is not present in the average structure, about disordered and short-range 

ordered atomic displacements. To successfully model these displacements it is often 

necessary to utilize a 'unit cell' which is larger than the crystallographic one. It is also a 

common strategy to introduce disorder in an average sense without increasing the unit cell. 

For example, in the case where an atom is sitting in one of two displaced minima in the 

atomic potential, its probability of being in either well is random, can be modeled as a split 

atomic position with 50% occupancy in each well. This is not a perfect, but a very good, 

approximation of the real situation and is very useful as a first order attempt at modeling 

the data. 

This 'Real-space Rietveld' approach is proving to be very useful and an important first 

step in analyzing PDFs from crystalline materials. This is because of two main reasons. 

First, its similarity with traditional Rietveld means that a traditional Rietveld derived 

structure can be compared quantitatively with the results of the PDF modeling. This is an 

important first step in determining whether there is significant evidence for local 

distortions beyond the average structure. The Rietveld model is refined to the PDF without 
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relaxing any of the symmetry constraints of the crystallographic model. The resulting fit 

can be assessed to look for significant deficiencies. In addition, the refined parameters can 

be compared directly with the results from Rietveld to make sure they are consistent. If 

evidence exists to suggest that local structural distortions beyond the average structure are 

present, these can then be incorporated in the PDF model. The second strength of the real- 

space Rietveld approach is the simplicity of the structural models making it quick and 
straightforward to construct the structural models and making physical interpretations 

from the models similarly quick and straightforward. 

Why might one want to analyze a well-ordered crystalline material in real-space? In this 

case, there is no diffuse scattering in the diffraction pattern and there seems little advantage 

in going for the PDF. In fact, it can still be a worthwhile exercise for the reason illustrated 

with the oil-change analogy in Section 6.2. Below we describe three reasons for carrying 

out a real-space Rietveld refinement on a well-ordered material, beyond the obvious 

advantages that are apparent if disordered local atomic displacements are present. 

Local structural parameters, such as thermal factors and anharmonicities in the crystal 

potential, may be more accurately determined in real-space than reciprocal space. On the 

other hand, average structure parameters, such as lattice parameters, are much more 

accurately obtained in Q-space. As a concrete example, let us consider thermal (or more 

precisely displacement) factors. The atomic thermal parameters are measured by 

considering the monotonic Gaussian fall-off in intensity of Bragg-peaks: the Debye-  

Waller factor. For a sample with a high Debye temperature, this fall-off can be quite slow. 

For example, a Uii - -  0 . 0 0 2 5  ~k -2  results in a Debye-Waller  envelope with a standard 

deviation (half-width) of t r -  14 A-1. Many Rietveld refinements are not carried out over 

a range beyond 14 A-1 ( d -  0.45 * )  because of the problem of Bragg-peak overlap at 

high-Q. On the other hand, PDFs are routinely measured taking a range of data up to 

30/k-a and beyond. Furthermore, the arbitrary background function used in most Rietveld 

refinements is extrapolated into the high-Q region where it cannot be separated explicitly 

from the data. A small error in the background at high-Q can have a significant effect on the 
refined thermal factor because of the low intensity in the Bragg-peaks themselves. In a 

PDF analysis the background is extracted explicitly. Similar arguments apply to other 

slowly Q-varying experimental effects such as absorption and multiple scattering. It is 

therefore to be expected that more reliable thermal factors can be obtained from a PDF 
analysis than from a Rietveld refinement; though it is clearly true that if Rietveld was 

carried out on a corrected S(Q) function (as will increasingly happen in the future) over the 

same range of Q as the PDF analysis, the resulting thermal factors will have similar 

accuracy. To date, no quantitative comparison of the relative accuracy of Rietveld and PDF 

derived thermal parameters has been carried out. Where the values have been compared 
they are in rather good agreement with the PDF derived parameters showing less of a 

tendency to yield unphysical values (for example becoming negative) (Gutmann et al., 
2000; Proffen et al., 1999). However, when a series of data-sets collected as a function of 



230 Underneath the Bragg Peaks 

temperature are compared more scatter is apparent in the PDF derived values than the 

Rietveld (Gutmann, Radaelli and Billinge, unpublished). The reason is not clear though it 

may result from inadequate (simple Gaussian!) profile functions being used in the PDF 

refinements and the situation may improve as the sophistication of the PDF modeling 

approaches that of Rietveld, the more mature technique. 

Another possible reason to carry out a real-space Rietveld analysis on an well-ordered 

crystal is that the structural parameters are differently correlated in real- and reciprocal- 

space refinements because the equations to calculate the signal from the model are 

different. In any refinement, different refinement variables can become significantly 

correlated with each other and each one can take on an unphysical value which, 

nonetheless, when applied together reproduces the data well. This is true in real- and 

reciprocal-space refinements. However, since the various variables will be differently 

correlated with each other in the two cases, a joint refinement in real and reciprocal space 

can remove the correlations. At present there is no joint real- and reciprocal-space 

refinement code in existence though this will undoubtedly be remedied in the future. 

Finally, more precise information about the atomic potential can be gleaned from a real- 

space analysis in a well-ordered material. This is exemplified by the measurement of 

atomic potential parameters from the correlated atomic motion in crystals using PDF 

measurements (Jeong et al., 1998; Dimitrov et al., 1999). Because they are directly 

bonded, nearest-neighbors tend to move in phase with each other and their motion is 

positively correlated. If the bond is very stiff the relative motion of these neighbors with 

respect to each other can be quite small (in covalent semiconductors the nearest neighbor 

motion is > 80% correlated!). The motion of far neighbors is uncorrelated. The thermal 

factor measured in a conventional crystallographic refinement is the uncorrelated one. This 

often reflects the softest bonds in the material. For example, in the semiconductor alloys it 

reflects the weak bond-bending forces. The stiff bond-stretching force can be measured 

from the correlated motion of the near neighbors which is obtained from the width of near 

neighbor peaks in the PDF. 

When local atomic displacements away from the average structure exist, and therefore 

significant diffuse scattering intensity is present in the scattering, a conventional Rietveld 

refinement becomes inadequate. At this point, a PDF analysis, or a quantitative assessment 

of the diffuse scattering in Q-space, is required. We note a couple of developments in 

traditional Rietveld approaches that are currently under way. First is a concerted effort to 

treat diffuse scattering intensity explicitly in a Q-space Rietveld refinement (Lawson et al., 

2000). Second is the desire to carry out Rietveld refinements, not on raw diffraction data, 

but on corrected data in the form of S(Q) (Radaelli, private communication). The first 

development is especially useful in cases where it is difficult to obtain a high-quality PDF 

as was shown by Lawson et al. (2000) in a study of plutonium in which a nuclear 

absorption resonance limits the Q-range of the data and therefore the resolution of the PDF. 

The second development removes much of the uncertainty in conventional Rietveld 



Extracting Structural Information from the PDF 231 

refinements coming from extrinsic effects such as absorption, multiple scattering and 

backgrounds from Compton scattering in X-rays. The goal is to extend the range of Q over 

which refinements can be reliably carried out. By explicitly correcting for these 

experimental effects, as is routinely done in a PDF analysis, the Rietveld refinement can be 

extended far into the region where Bragg-peaks are significantly overlapped with much 

greater confidence because no arbitrary background function is being extrapolated into that 

region. 

There are a number of reasons why real-space-Rietveld is not more widely used to study 

the structure of materials. The main reason is that the technique is in its infancy: its 

accuracy and the stability and reliability of the results obtained from the codes are only 

recently being proved. The second reason is that the complimentarity of a PDF refinement 

and a conventional Rietveld refinement are only now becoming widely appreciated. 

Without this motivation there is no reason to explore real-space in the study of a well- 

ordered material. Finally, a Rietveld refinement is carried out on raw powder diffraction 

data. One has to have a very good reason to embark on a seemingly complicated and arcane 

data analysis procedure as is required for PDF analyses. To date, there are few user- 

friendly and straightforward to use data analysis packages. However, as we pointed out in 

the previous paragraph, there is a trend in Rietveld towards analyzing corrected data rather 

than raw data. GUI (graphical user interface)-based, easy to use data analysis programs for 

obtaining S(Q) and the PDF, are also now becoming available, as are faster and faster 

computers. It has never been easier to obtain a PDF than now and so, on this third point, the 

real- and reciprocal-space communities are beginning to converge. We envisage increasing 

use of joint real- and reciprocal-space analyses in the future to solve challenging structural 

problems or to extract more complete structural information from well-ordered materials. 

As, increasingly, newly discovered materials are tending to be significantly disordered, the 

use of real-space analyses is expected to increase. 

6.3.1.1 Example of real-space Rietveld: PDFfit. The most sophisticated and robust 

real-space Rietveld code available at the time of writing is the PDFfit code (Proffen and 

Billinge, 1999). This code allows multiple data-sets to be refined and can handle multiple 

phases. It has a command-line driven interface allowing great flexibility and user control. 

Arbitrary constraints can be introduced between the parameters as required, for example, 

to reproduce the average symmetry of the sample or to allow rigid rotations or translations 

of sets of atoms. The program also incorporates a FORTRAN style interpreter allowing 

mathematical formulas to be evaluated dynamically as the program executes. It can be 

controlled using macros allowing the refinement to be easily automated. The program uses 

a least-squares minimization procedure and yields parameters with estimated standard 

deviations associated with them. As with all Rietveld refinements, these tend to be 

underestimates of the real absolute errors because they do not account for systematic errors 
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in the data. However, they provide a good baseline for estimating the significance of 

structural parameters and should be a good estimate of the relative changes of parameters 

between similar data-sets (e.g. temperature dependence of parameters). We mention one 

caveat. The e.s.d, on refined parameters are only as good as the estimated random errors on 

the data themselves. A number of PDF analysis programs propagate random errors from 

the counting statistics of the measurement and these are a good estimate of the uncertainty 

on a particular point of the PDF. However, the errors from point to point in the PDF are 

correlated due to the finite range of the Fourier transform. To properly determine the 

estimated errors on the data these error correlations should be calculated. In principle this 

is straightforward, but in practice it is not generally carried out. It is expected that this will 

be addressed in future codes as the subject of quantitative real-space analysis matures. 

Interested readers are referred to the downloads section of the total scattering home-page 

(http://www.totalscattering.org). 

The residuals functions used in PDFfit are equivalent to the Rietveld R-values. The 

weighted agreement factor, Rw is defined as 

N 

~_. w( r i ) [Gobs ( r i )  -- Gcalc(ri)] 2 

Rw -- i=l (6.2) 
N ' 

~_. w(ri)GZobs(ri) 
i=1 

where Gob s and Gcalc are the observed and calculated PDFs (in the form of G(r)) and w is 

the weighting factor, w(ri) -- 1/~(ri) ,  where o-is the estimated standard deviation on the 

ith data-point at position ri. Note that PDF residuals functions are not strictly statistically 

significant quantities since neighboring points in the PDF are not statistically independent. 

This is discussed in more detail in Appendix 5.3. For example, a reliable X 2 cannot be 

determined from RPDF --wp as it can from a Rietveld refinement by dividing Rwp by ( N -  P) 

where N are the numbers of points and P the numbers of parameters in the fit. Nonetheless 

RPDF is a quantitative measure of goodness of fit and can be used to compare models and wp 
minimized to optimize a model. Points in the PDF separated by Ar--~ 7r/Qmax are 

approximately statistically independent and so a reasonable estimate of X 2 is possible by 

taking (Billinge, 1992): 

PDF 
wp 

(rma x --  rmin)Qmax ) - p 
OT 

6.3.1.2 Real-space RietveM example: YBa2Cu3OG+& A long-standing controversy has 

existed between the diffraction and XAFS communities concerning the existence, or not, of 

a split atomic site for the apical oxygen ion in the structure of YBazCu306+8: the oxygen 
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that lies immediately above the copper ion in the electronically active C u O  2 planes. Such a 

split site was observed in polarized XAFS measurements (Mustre de Leon et al., 1990), but 

there was apparently no evidence for it in any Rietveld (Francois et al., 1988; Kwei et al., 

1991), or single-crystal, refinements (Sullivan et al., 1993; Schweiss et al., 1994). A 

number of groups have reproduced the early XAFS result (Booth et al., 1996; Stern et al., 

1993), although it is not seen in all samples, making it even more of a puzzle. Of course, 

XAFS and crystallography measure different things: XAFS local pair correlations and 

crystallography the average periodic structure. It is clear that the PDF method should be 

able to speak to this problem since it is a diffraction technique which, nonetheless, 

measures local atomic pair correlations. Data were collected on a series of YBazCu306+,~ 

samples with different oxygen contents, 6 (Gutmann et al., 2000). First, it was important to 

establish that the data agreed with earlier crystallographic studies. Conventional Rietveld 

and Real-space Rietveld were carried out on the same data-set in Q- and r-space, 

respectively. When the r-space refinement was constrained to have the space-group 

symmetry of the average structure, excellent quantitative agreement was obtained between 

the Q- and r-space results; and these agreed quantitatively with earlier crystallographic 

measurements. The real-space fit is shown in Figure 6.4. This showed that, even in the 
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Figure 6.4. Experimental PDF from YBaeCu306+x measured with neutrons on SEPD (circles). Fit to the data 
using the crystallographic structural model and the program PDFFIT (solid line). Below is plotted a 

difference curve. The dotted lines on the difference curve indicate the estimated errors 
at a level of +__ o- (Gutmann et al., 2000). 
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local  structure, a diffraction measurement does not see evidence for a split position for 

the apical oxygen. An attempt was made to fit split atomic positions in the real-space 

refinement. The refinement was unstable to the presence of a split site for the apical 

oxygen; however, a split of the planar copper site along the z direction did converge with 

marginally improved agreement. The tentative conclusion from this was that there is 

disorder on the in-plane copper site rather than the apical oxygen. The strength of the Real- 

space Rietveld approach here was, first, to establish quanti tat ive agreement between the 

local and average structure results by refining exactly the same model including similarly 

constrained anisotropic thermal factors. This established that the discrepancy between the 

XAFS and crystallographic results was not simply that they measure structure on a 

different length-scale. The second contribution of the real-space-Rietveld study was its 

ability to test for the presence of split sites. The splitting of displaced sites is small (--~ 0.1-  

0.2 A) and the limited spatial resolution of the Q-space analysis obscures it except as an 

enlarged thermal factor: dmin -- 0.4 A for the Rietveld refinement compared to d m i  n - -  0.25 
for the real-space refinement. Since XAFS measures pair-correlations, it is hoped that the 

discrepancy between the diffraction and XAFS results can be resolved by the observation 

of the split copper site which will serve to split the in-plane copper to out-of-plane oxygen 

pair-correlation and might possibly explain the XAFS results. At the time of writing this 

issue is still not fully resolved. 

6.3.2 Monte-Carlo simulated annealing based regression schemes 
Rietveld refinement traditionally uses least-squares algorithms to minimize the residuals 

function. An alternative approach is to use a Monte-Carlo simulated annealing algorithm 

(Metropolis et al., 1953). Conventional simulated annealing is used to find the global 

minimum in a complicated potential energy landscape. Parameters of the system, such as 

atom positions, are allowed to vary in some random way. After each change the energy of 

the system is calculated using the specified potential energy function. If a change reduces 

the energy of the system it is accepted. If it raises the energy of the system then it can be 

accepted or rejected. This decision is made randomly according to an underlying 

probability. It is this 'gambling' aspect of the technique that got its name: Monte-Carlo is 
the famous gambling center for the rich and famous on the French Riviera in the 

sovereign principality of Monaco. In simulated annealing the underlying probability is 

given by 

P = e -6E/kr (6.3) 

where AE is the change in energy, k is the Boltzmann constant and T is the 'temperature' 

of the system which is initially set by the experimenter. When T is higher, more 'bad' 

moves are accepted and more of the energy landscape is probed by the simulation (it is 

easier to get out of local minima). The temperature can then be systematically lowered to 
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guide the simulation into the global energy minimum. This is a widely used and powerful 
method in statistical physics and the computational technology is well developed (Binder 
and Heerman, 1992). 

Clearly, Monte-Carlo simulated annealing is a powerful approach to minimization of 
any parameterized function and is particularly applicable if there are a large number of 
parameters and a complicated parameter-space. From this perspective it lends itself to 
being applied to solving complicated structural problems, where the function to be 

minimized is not an energy but a residual function: i.e. the agreement between structural 
data and a calculated scattering pattern from a model. In this case there is no obvious 
reason why the underlying probability should be a Boltzmann distribution as in simulated 

annealing. However, in the absence of rigorous arguments justifying the adoption of 
another form for the probability distribution, and the extensive understanding that exists of 

the behavior of simulated annealing with the Boltzmann distribution (Binder and Heerman, 
1992), this was the natural place to start. The use of simulated annealing to minimize a 

residual function constitutes solving the famous 'inverse problem'. The direct problem is 
that given a potential energy function, the structure can be determined. The inverse 

problem is that, given a structure, can the potential energy be determined? The structural 

data are the input to the inverse problem; the structural model is then fit to the data by 
minimizing the residuals function to obtain a structure without specifying any potential 
energy. The approach was first used as long ago as the 1960s by the MIT group (Kaplow 
et al., 1968; Renninger and Averbach, 1973). Limited computing power really hindered 
progress at that time and the widespread use of this approach has really occurred since the 

late 1980s. At this time, two approaches were taken by different groups. McGreevy and 
Puszati (1988) initially applied the technique to study the structure of liquid argon and 
coined the name Reverse Monte-Carlo (RMC) to differentiate the technique from 

conventional simulated annealing. Shortly afterwards, Toby et al. (1990) also used 
simulated annealing to study correlated local structural distortions in crystalline materials. 
The implementations of the technique were quite different and both have been applied with 

some success. 
The strength of the McGreevy and Puszati (1988) implementation is also a potential 

weakness. In this case a large box of atoms is used as the structural model. These are 
allowed to arrange themselves, with the minimum of constraints, in such a way as to give 
good agreement with the diffraction data. In the most unconstrained case the hard-sphere 
repulsions, which prevent atoms overlapping, are the only constraints. Originally the data 

to be fit were in the form of a PDF (Keen et al., 1990), but more recently total scattering 

data (Montfrooij et al., 1996) and even single-crystal data (Nield et al., 1995) have been 
used. Clearly the strength of this approach is that it is unbiased. The resulting structural 
model gives a solution that is unprejudiced but consistent with the data. Any structural 
motifs that emerge in the model, such as local tetrahedral atomic arrangements in network 
glasses, are probably real. The reason is that the simulated annealing, by its very nature, 
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will find the most probable, and therefore most disordered, structural solution that is 

consistent with the data. Any atomic correlations (ordered atomic arrangements) that 

emerge in the model must be more or less uniquely specified in the data themselves. The 

problem with the technique is that the diffraction data do not give a unique structural 

solution; far from it. Especially in disordered systems, where the structural information is 

limited, there is an enormous degeneracy in possible structural solutions consistent with 

the same data-set. If one does not constrain the structural model in physically reasonable 

ways your structural solution is quite likely to be wrong and often unphysical (in fact this is 

usually the way that one knows that the structural solution is wrong) (Keen, 1998). This 

does not detract from the method since it is a natural consequence of weakly constrained 

RMC modeling. However, clearly care must be taken when interpreting the results of this 
kind of modeling. At this point, the ways forward are to get additional data and to constrain 

the model. Additional data includes differential and partial PDFs, X-ray and neutron data, 

data from other techniques such as XAFS, and so on. Adding constraints to the model, such 

as limiting bond angle distortions to within physical ranges and ensuring connectivity of a 

network for example (Keen, 1998), ensure that only physically reasonable structural 

solutions are accessible to the simulation and dramatically reduces the phase-space of 

structural solutions. The danger, of course, is that the solution is biased towards the answer 

that is expected. In general, a balance has to be struck between constraining and not 
constraining. 

When faced with crystalline data, a great deal is known about the structure from a 

conventional crystallographic analysis. It is clearly inefficient, and most probably 

disastrous, to specify the starting model by placing atoms randomly in the box and hoping 

that the correct crystal structure is found by random mutations of the model. In this case, a 

more conventional refinement is preferred where a well-defined starting model is specified 

and this is allowed to distort randomly to fit the data. When a Monte-Carlo algorithm is 

used for the regression the term RMC refinement has been coined (Keen, 1998), 
distinguishing the approach from RMC modeling as described in the previous paragraph. 

As RMC modeling becomes more constrained the distinction becomes somewhat cloudy; 

however, it is useful to distinguish the two approaches since in many people's eyes RMC 

equates to unconstrained RMC-modeling with all its shortcomings. The Toby et al., 1990 

approach to modeling constitutes RMC refinement. In this implementation a small unit cell 

is specified and periodic boundary conditions are applied analogous to real-space 

refinement. A unit cell larger than the crystallographic one is usually specified since one is 

generally interested in atomic displacements away from the average structure. A useful 

feature of this program is that fixed and varying interpenetrating cells can be specified 

allowing parts of the structure to be left invariant but distortions introduced on a sublattice 

of interest. A limitation of this implementation is that a single thermal factor is specified 

for the entire sample. Variations in thermal factor from site to site can only be incorporated 
by introducing static atom displacements in the model. This places this approach half way 
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between RMC modeling and real-space refinement. In the former approach all disorder, be 

it static or thermal, is modeled by the distribution of positions of the many atoms in the 

large box. In the latter approach, harmonic (Gaussian) distortions are specified by 

anisotropic thermal factors. Anharmonic components such as double-wells can be 

incorporated with static atom displacements. The danger of the intermediate approach is 

that static displacement amplitudes can be exaggerated if they are on a site with a larger 

thermal factor than the average and this should be borne in mind in the interpretation of the 

modeling results. 

The notion of RMC refinement has been extended to modeling network glasses with 

some success (Wicks, 1993; Keen, 1998). In this case a large box of atoms is used, similar 

to RMC modeling, but the initial network is specified. This large box refinement approach 

has the advantage that the atomic probability distributions are represented by the ensemble 

average of atom positions in the box rather than by a global thermal factor. The problem 

with this is the lack of statistics and sometimes a global thermal factor is also introduced in 

these models. The large box also gives these refinements more of a flavor of the RMC 

modeling in that correlated atom displacements which emerge from the refinement do so in 

an unbiased way and are likely to have significance. On the other hand, disordered 

displacements will tend to be found if they are consistent with the data and correlated 

displacements might be masked. In these cases there is no substitute for more, and better, 

data. 

A number of RMC modeling and refinement codes are freely available. The list of RMC 

programs supported by the McGreevy group can be found at the http://www.studsvik.uu.se 

web-site. A versatile and straightforward to use program for data simulation and structure 

refinement from single-crystal and powder/amorphous data, with built in RMC routines 

based on the McGreevy algorithms, is DISCUS (Proffen and Neder, 1997) that is available 

at http://www.pa.msu.edu/cmp/billinge-group/programs/discus/discus.html. A number of 

examples of data analyses using each of these programs will be presented in later chapters. 

6.3.3 Empirical potential based modeling schemes 

Both the real-space Rietveld and reverse Monte-Carlo techniques are essentially regression 

techniques: structural models are systematically altered in such a way as to improve the fit 

of the calculated and measured PDFs. These approaches do not contain any (or very little) 

of the underlying physics or chemistry of the material. This information is contained in the 

atomic interactions that, as we emphasize in later chapters, give rise to the interesting 

material properties. Once empirical potential parameters are known for a material it is 

possible to calculate many properties of the material from phonon dispersion curves to 

complex dynamical processes such as fracture. Generally, these potential parameters are 

determined by considering elastic constants, phonon frequencies, and in the best 

circumstances, fitting to complete sets of phonon dispersion curves determined from 
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single-crystal inelastic neutron diffraction data. In the absence of INS data, the limited 

number of elastic constants present in high-symmetry materials, and the limited number of 
phonon frequencies that can be measured using straightforward optical techniques such as 

Raman and IR spectroscopy, mean that empirical potentials determined in this way are 

quite under constrained and additional information is highly valuable. Total scattering data 

contains significant information about atomic dynamics and this can be utilized to get 

potential parameters. 
In the case where the only important interactions are pair-wise, i.e. all of the properties 

can be explained with a set of potentials between pairs of atoms, there is a direct (and 

unique) relationship between the atomic potential and the resulting pair correlation 

function (when more than one atom-type is present all of the partial pair distribution 

functions are needed). When higher than pair-wise interactions are needed to explain the 

structure (e.g. 3-body interactions) there is not a unique relationship between the measured 

PDF (which only contains 2-body information, at least in the kinematical scattering limit 

of interest for X-ray and neutron diffraction) and the underlying potential. Nonetheless, 

progress can be made by introducing effective pair interactions. For example, a bond- 
bending force can be approximated by a spring between specific second neighbor atoms. 2 

One of the first attempts to extract pair potential information directly from measured 

PDF data was by Kaplow and co-workers (Kaplow et al., 1964; Lagneborg and Kaplow, 
1967). In simple metals such as solid lead and cobalt, they extracted the mean force 

potential, U(r), (that is a weighted sum of all the pair potentials of atoms surrounding the 

atom at the origin, e.g. see Hansen and McDonald, 1986) from the expression 

p(r) = Oo exp kBT (6.4) 

where kB is Boltzmann's constant (Kaplow et al., 1964). The derivative of U(r) with 

respect to distance gives the net force on the atom at the origin (due to all the neighbors at 

various distances). Since p(r) was explicitly measured (it is the experimental PDF!) U(r) 
can be obtained directly by inverting Eq. 6.4. 

More recently, correlated and uncorrelated thermal motion have both been extracted 

from the PDF (Jeong et al., 1999, 2002) by looking at the peak broadening as a function of 
pair separation, r. Information about dynamics in different directions in the crystal is also 

present in the PDF if the structural origin of particular peaks in the PDF is known. As we 
have discussed earlier, this is especially evident in the semiconductor alloys where (110) 

vibrations are stiffer than in other directions in the lattice (Jeong et al., 1999). It is also seen 
in cubic systems in general and is prominent in cerium where longer-range potential 

parameters are important (Jeong et al., 2002). In these cases the data were compared with 

e Though see the very interesting toy model calculations of special 2-D structures that have significantly 
different atomic orderings, easily visible by eye, due to 3-body interactions but have identical pair-pair 
interactions and therefore identical scattering patterns (Welberry and Withers, 1991; Welberry and Butler, 1994). 
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PDFs calculated from large scale models with thousands of atoms which were relaxed 

using empirical potentials. The empirical potential parameters could be altered to improve 

the agreement between the calculated and measured PDFs. Thus, empirical potential 

parameters can be estimated by modeling PDF data. The approach is to start with an 

empirical potential and a trial structure and relax the structure to minimize the total energy. 

The dynamical matrix of the relaxed structure is then calculated and the phonon dispersion 

curves determined. At a given temperature the lattice dynamics can be determined by 

projecting the phonons into real-space, as discussed in more detail in Chapter 7, and 

convoluting the calculated PDF of the average structure appropriately. This approach 

yielded excellent agreement between calculated and measured PDFs for a series of 

semiconductor alloys (Jeong et al., 2001; Peterson et al., 2001). This was taken a step 

further by Dimitrov et al. (1999) who applied regression to the process, allowing the 

potential parameters to be updated and the process iterated until the fit to the data 

converged. Their claims that using this approach it is possible to obtain phonon dispersion 

curves with similar accuracy as from single-crystal inelastic neutron scattering studies 

have proved to be unfounded (Reichardt and Pintschovius, 2001; Thorpe et al., 2002; 

Jeong et al., 2002). Nonetheless, useful information about the underlying potential is 

available in the total scattering data from powders, especially about q ~ 0 phonons, that 

cannot be obtained from Raman, IR or elastic measurements. In the absence of large 

single-crystals, and ample beam-time on a neutron inelastic spectrometer, this approach 

certainly has merit. Furthermore, with increases in computing power, this approach may 

become a viable one for regular data modeling, replacing the pure regression schemes 

described in Sections 6.3.1 and 6.3.2. One of the evident advantages is that the refined 

parameters, the potential parameters, can then be used in lattice dynamical calculations and 

reveal other information such as specific heat, phonon frequencies, and so on. 

A number of alternative approaches are also of interest. Soper (1996) has introduced a 

method for refining empirical potentials from liquids using a Monte-Carlo algorithm. 3 

A model is set up with initial values for the pair potential parameters and the mean force 

potential, U(r), calculated for each pair of atoms. This is the same U(r) that was introduced 

above in Eq. 6.4. Inverting Eq. 6.4 we get 

U(r)- -  -kBT ln(p(r___))) 
Po 

-- --kB T ln(g(r)) (6.5) 

where g(r) is the pair distribution function defined in Section 3.1.3.1. We therefore have a 

reference Um(r) from the model and a measured U D (r). We would like to think of a way to 

3 This is an example of, so-called, 'inverse Monte-Carlo' (Gerold and Kern, 1987; Livet, 1987) which 
should be distinguished from 'reverse Monte-Carlo' discussed in Section 6.3.2. The principle difference is 
that in an inverse Monte-Carlo refinement potential parameters are modified and an energy is minimized 
using a Monte-Carlo algorithm whereas in reverse Monte-Carlo the X 2 of the fit is used directly as an 
effective energy that is minimized using Monte-Carlo simulated annealing. 
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modify Um(r) to bring it closer to UD(r). To do this we add a perturbation to the original 
reference potential, U~(r) that is the difference between Um(r) and UD(r). i.e. the new 
potential, 

urn(r) -- U~(r) + kT ln(gm(r)gD(r) ). 

Using Monte-Carlo, the model is then relaxed using the new potential, resulting in a new 
calculated g(r). The process is then iterated until it reaches convergence. This approach has 
proved to be very powerful in the study of complex liquids (Soper, 1996, 2000; Landron 
et al., 2001). 

Inverse Monte-Carlo approaches have also been used to extract information from 
single-crystal diffuse scattering data. For example, effective pair interactions were 
extracted from Vanadium hydride, an important potential hydrogen storage system, using 
this approach (Pionke et al., 1995) which is described in detail and compared to other 
methods in Schweika (1997) and Schweika and Pionke (1998). The use of highly 
simplified 'toy model' potentials (e.g. Ising model Hamiltonian and springs between 
molecular units) combined with Monte-Carlo energy minimization has also proved very 
effective to understand diffuse scattering in crystalline materials (Welberry, 1998, 2002 
and references therein). 

6.4 ADDITIONAL INFORMATION AND ADVANCED MODELING 

6. 4.1 Joint real- and reciprocal-space refinements 
The potential advantages of carrying out refinements in real vs. reciprocal space have been 
discussed in detail in Section 6.3.1. We simply reiterate here that both approaches are 
highly complementary. We envisage in the future that joint real and reciprocal space 
refinements will be required to solve the structures of complex materials with significant 
disorder. Often this disorder, or small and difficult to detect atomic displacements, can be 
very important for the properties. This paradigm is exemplified by ferroelectrics. 
Ferroelectrics have a switchable spontaneous electric polarization coming from small, 
symmetry breaking, atomic displacements. This property makes them very powerful 
dielectrics and potential gate materials on field-effect transistors for example. The atomic 
displacements can be quite subtle leading to long-standing debates about the nature of the 
atomic structure (see for example the debate on the venerable ferroelectric BaTiO3 from 
Wul and Goldman (1946), through Comes et al. (1968), to Kwei et al. (1993) and beyond). 
Another long-standing debate existed about the detailed structure of the antiferroelectric 
material PbZrO3. A full solution of the structure required a careful analysis in both real and 
reciprocal space (Teslic and Egami, 1998). The Rietveld and real-space refinements (this 
study used small-box RMC rather than real-space Rietveld) are reproduced in Figure 6.5. 
Another nice example where joint real-reciprocal space analysis let to new insight is in the 
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Figure 6.5. Fits of structural models of PbZrO3 to neutron powder diffraction data taken at SEPD at T -- 10 K 

model. (a) Rietveld refinement carried out in Q-space. (b) Real-space fit to the PDF from the same data 
(Teslic and Egami, 1998). 

molybdenum oxide materials that have been extensively studied by Hibble and Hannon 

(2002). In the future it is expected that it will be possible to carry out joint refinements at 

the same time in real- and reciprocal-space, though at the time of writing no such code has 

been implemented. 
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6.4.2 Difference modeling 

It is often the case that one is interested in understanding a structural change occurring at a 

phase transition or as a function of sample composition or processing. A useful approach to 

probing subtle changes in structure is difference modeling. With this approach, the actual 

PDF itself is not fit, but the difference curve between two PDFs is fit. For example, consider 

the case where higher symmetry structure (call it the reference structure) is transforming to 

a lower symmetry phase. The difference curve can be obtained by subtracting the PDF of 

the reference phase from that of the low symmetry phase. The difference curve is then fit 

with a difference between the model of the reference and symmetry broken phase. 

Why would one want to do this rather than just fit each PDF separately? In general, it is 

useful if the structural changes are small. Taking the difference has the effect of canceling 

two contributions to the PDF that can potentially hide the structural changes. The first is 

the existence of systematic errors in the data. These are inevitably present because the data 

correction steps, though generally satisfactory, are not perfect, as discussed in Chapter 5. 

However, when two data-sets, measured on similar samples (or the same sample) under 

similar conditions, are compared the systematic errors are largely reproduced and can be 

cancelled by taking the difference. The second contribution that is cancelled in the 

difference is if there are subtle features of the reference structure, which are not properly 

modeled in the model of the reference structure, but which do not change at the phase 

transition. An example might be some dopant induced disorder in the structure of a doped 

material such as a transition metal oxide which is undergoing a displacive transition. In 

these cases, the change in structure at the phase transition can be smaller than the effects of 

these systematic effects. However, after canceling the systematic effects by taking a 

difference, the structural changes are significant. 

An excellent example of this is the observation of lattice polaron formation at the 

metal-insulator transition in La~_xCaxMnO3. In the doping range 0.17 < x < 0.5 this 

material is metallic at low temperature but has a metal-insulator transition at --~ 200-  

300 K. A number of techniques (e.g. see Ramirez, 1997) indicate that the metal-insulator 

transition occurs because of carrier localization due to lattice polaron formation: the charge 

carriers localize and the lattice distorts around the localized carrier. One of the key pieces 

of evidence came from the PDF where peak broadening indicated polaron formation as 

described in Section 6.2.3.3. The nature of the polaronic distortion was studied by 

difference modeling. The results are shown in Figure 6.6. The difference is taken between a 

data-set just above and just below the MI transition. The main features of the difference 

curve could be fit well over a wide range of r by a model for the polaron where doped 

charges localize on Mn sites and contract the local octahedron isotropically. Neighboring 

octahedra (without a localized charge) becoming elongated along one direction consistent 

with the formation of a Jahn-Teller  distortion. From the modeling it was found that the 

magnitude of the distortion is --~ 0.12 ,~. 
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Figure 6.6. (a) PDFs of Lao.75Sro.25MnO3 from above and below the metal-insulator transition (i) data (ii) 
models. (b) Difference curves between the data above and below the transition (i.e. solid line minus dotted 
line in (a)). The simple polaron model shown in (c) picks up the main structural changes with only a single 

parameter. Note that the distortions are exaggerated in the picture of the polaron to make them easier to 
visualize (Billinge et al., 1996). 
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Chapter 7 
Dynamics of the Local Structure 

7.1. MEASUREMENT OF INELASTIC SCATTERING 

In the discussion so far, we assumed that the instrument of measurement has poor energy 

resolution, and measures the intensity integrated over all the energy transfers. It is possible, 

however, to set up equipment in a way that the energy lost or gained during the scattering 

can be measured. Such an experiment, an inelastic scattering measurement, is particularly 

straightforward for neutron scattering, since the energy of neutrons used in the 

measurement (10 meV-1  eV) is comparable to the energy of excitations in the solids, 

such as lattice dynamics. An inelastic X-ray scattering (IXS) measurement is more 

difficult, since the incident X-ray energy is of the order of 10-100 keV, much larger than 

the energy scale of interest. It became feasible only recently with the advent of third- 

generation synchrotron sources and advances in monochromator technology. However, it 

is a very promising method to determine the dynamics of electrons and atoms. 

In this chapter we describe how to carry out an inelastic scattering measurement and 

how the motion of atoms will affect the scattered intensity of neutrons and X-rays, 

introduce the concept of the dynamic PDF, and finally discuss how the lattice dynamics 

affect the neutron PDF. Magnetic excitations are outside the scope of this chapter, but the 

discussions on phonons can be readily extended into the treatments of magnons and 

crystal-field excitations. The pulsed neutron scattering measurements to determine the 

PDF, described in Chapters 4 and 5, are in-between pure elastic and inelastic 

measurements and this introduces complications as well as opportunities. The PDF 

determined by a regular powder neutron scattering measurement includes both elastic and 

inelastic scattering intensities; however, the special geometry of the measurement means 

that it captures part of the dynamics while ignoring the rest. Local lattice dynamics of a 

certain range of energy transfers result in irregular distortions of the PDF that depend upon 

the detector angle. 

7.1.1 Neutron triple-axis-spectrometer 

For a steady state neutron or X-ray source a triple-axis spectrometer offers the capacity 

of measuring the inelastic scattering intensity (for details see Tranquada et al., 2002). 

A triple-axis spectrometer (Figure 7. l) consists of a monochromator, sample, and analyzer, 

each placed on a separate goniometer to allow the orientation of each to be independently 

controlled by a motor. Thus one can specify the energy and direction of the incident beam, 

the sample orientation, and the energy and direction of the detected scattered beam. 

249 
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Figure 7.1. Schematic of a triple-axis spectrometer (actually BT2 at the national center for Neutron Research 
at NIST in Maryland, USA) used in inelastic neutron scattering measurement with a reactor source. The three 
axes are the monochromator (#1), the sample (#3), and the analyzer crystal. (#5). This spectrometer also has 

pyrolitic graphite (PG) and beryllium filters upstream of the monochromator. The monochromator and 
analyzers are either PG or Heusler alloy for unpolarized and polarized neutron experiments, respectively. 

The scattering process is then determined by the energy and momentum transfers, 

ho~ = h~init  -- h~final (7.1) 

and 

Q = kinit - kfinal (7.2) 

where an incoming neutron or X-ray photon has the energy hoginit and the m o m e n t u m  kinit , 

and is scattered into the state with the energy hogfinal and the m o m e n t u m  kfinal. Thus for 
neutrons, 

h 2 
- -  ~ -- kfinal) (7 .3)  h~o 2m (k2nit 2 

where m is the neutron mass, kfinal - -  Ikrmal 1, kinit - -  Ikinit 1, and for X-rays, 

h o 9  = h c ( k i n i t  - kfinal ) (7 .4)  

where c is the speed of light. For both cases, 

Q2 2 
--  kfinal + k2nit - 2kfinalkinit co s  20 (7.5) 

where 20 is the angle between kinit and kfinal. For an elastic scattering (~o= 0, 

k - -  kinit = kfinal) process, 

4"rr sin 0 
Q0 = 2k sin 0 = - - .  (7.6) 

A 

However, for an inelastic process Q is different from Q0. The energy and momentum lost 

by the probe particle are transferred to the solid. Thus the energy gained by the solid is hw. 

This transferred energy and momentum can create or annihilate (with negative energy 

transfer) excitations such as lattice vibrations (phonons) or spin waves (magnons). 
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7.1.2 Inelastic X-ray scattering measurement 
The measurement of phonons with X-rays is much more difficult since the energy transfer 
is smaller than the X-ray energy by many orders of magnitude. For instance, if one uses an 

X-ray of 10 keV and tries to measure a phonon with the energy of 10 meV an energy 
resolution of at least 10 - 7  is required. Only recently such a measurement became feasible 

because of advances in synchrotron sources and crystal monochromators. This is why, so 

far, most of the inelastic scattering measurements of phonons have been carried out with 

neutrons. On the other hand measurements of electronic excitations, such as the Compton 

scattering and interband transitions, do not require such high resolution. While these 

measurements are not easy because of low scattering intensity, inelastic X-ray scattering 

measurements of electronic process are becoming an important research technique. Unlike 
X-ray absorption spectroscopy it provides momentum resolved information, making it 

easier to make connection with the calculated band structure. 

An example of the schematic plan of an IXS station is given in Figure 7.2. In order to 

achieve such a high-energy resolution backscattering geometry is used for the 

monochromator and analyzer. In addition, the monochromator and analyzer have to be 

thermally and mechanically well isolated so that they are extremely stable with respect to 

temperature and vibration. At the ESRF the energy scan is accomplished by changing the 

temperature, and therefore the d-spacing due to thermal expansion, of the analyzer crystal! 

While neutrons track the dynamics of nuclei, X-rays bring out information on electron 

dynamics. While the dynamics of electrons tightly bound to the nuclei, the core electrons, 

simply follow the lattice dynamics, the dynamics of valence electrons provide direct 

information on the electronic band structure of the solid. For the determination of the 

phonon dispersion neutron scattering is a better choice most of the time. But since it is 

much easier to focus an X-ray beam than a neutron beam, IXS can be used in determining 

the phonon dispersion of very small crystals or even thin films and surfaces. For 

determining the dynamics of valence electrons in the bulk IXS is a unique method. The 

method of angle-resolved photoemission spectroscopy, though powerful, suffers from 

detector 

. . . . . . .  ~ _ _  

"", ~Zoot~ 1 

9 
in-line 

monochromator 

Figure 7.2. Schematic of the inelastic X-ray scattering spectrometer system, 3ID-C of the APS, Argonne 
National Laboratory (Sinnet al., 2001). 
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electron life-time and surface effects (because the escape depth of photoelectrons is only a 

few nanometers) making the results difficult to interpret. IXS, on the other hand, is a 

cleaner method to probe the bulk, without the complication of the final-state interaction. It 

should become a powerful method to determine directly, not only the single particle 

electron dispersion, but also the electron-phonon coupling. 

7.1.3 Chopper spectrometer 
For a pulsed neutron source a chopper is used instead of a crystal monochromator to 

produce a monochromatic beam. A chopper is a cylinder with a narrow path that rotates at 

high speed. It allows neutrons within a certain energy range to pass through, and plays the 

role of a low resolution monochromator. The incident energy is chosen by adjusting the 

timing of the opening of the chopper with respect to the generation of the pulse of neutrons. 

The energy band-pass is set by changing the speed of rotation. The energy of the scattered 

neutron is determined by the time-of-flight method using a large array of detectors placed 

around the sample (Figure 7.3). The reverse of this method is to fix the energy of the 

scattered neutrons by using an array of filters or analyzer crystals placed between the 

sample and the detectors in the backscattering geometry, as used on the IRIS spectrometer 

at ISIS. Much higher resolution, though a narrower range of energy transfers, is attained by 

this method. This type of spectrometer is illustrated in Figure 7.4. 

Figure 7.3. Chopper spectrometer (MAPS) used in inelastic neutron scattering measurement 
with a pulsed neutron source. 
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Figure 7.4. Backscattering spectrometer IRIS at ISIS. This configuration provides higher resolution but a 
narrower range of energy transfers can be accessed compared with chopper spectrometers such as MAPS. 

For a fixed incident energy Eqs. 7.3 and 7.5 yield, 

[ m+ ( 2m+)+] 
Q 2  2k~nit 1 hki2ni t - c o s ( 2 0 )  1 hki2ni t (7.7) 

For each detector placed at an angle 20the  tofspectrum produces the values of the dynamic 

structure factor, S(Q, w) along the Q - t o  curve determined by Eq. 7.7. S(Q, w) is related to 

the double-differential scattering cross-section introduced in Chapter 5 according to 

d 2 ~  =(kfinal)[o-cohScoh(Q,w)--~-O-incSinc(Q,w)] , (7.8) 
dO dEs kinit 

where o- is  the scattering cross-section and 'coh' and 'inc' refer to the coherent and 

incoherent scattering, respectively. By assembling the data from various detectors placed 

all around the sample the entire S(Q, w) map can be obtained. For example, S(Q, w) from 

the MAPS spectrometer of ISIS as shown in Figure 7.5. Note that for a given Q the 

maximum in 09 is obtained for 20 - 7r (backscattering). For this case the Q-w relation is a 

simple parabola: 

h 
w -- -~m Q(2kinit -- Q) (7.9) 

S(Q, to) can be determined only within this parabola. In particular, for small Q, 

hkinit 
_< Q - -  Vinit Q 

m 
(7.10) 
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Figure 7.5. S(Q, oo) functions determined using the MAPS chopper spectrometers at ISIS. (a) Spin wave 
dispersion curves (magnetic excitations) from a quasi-ID quantum magnetic system, KCuF3 (Lake et al., 2000). 

(b) Phonon dispersion map of YBa2Cu306.95. In both cases the vertical axis is energy transfer, w, and the 
horizontal axis is momentum transfer, Q. The color scale indicates intensity, red being high and blue/black low. 

The dispersion curves of the excitations are directly evident in the raw data as regions of high intensity at 
well-defined positions of energy and momentum (Egami et al., 2002). 

where  1,'init is the veloci ty  of  the incident  neutron beam.  Thus,  in order  to measure  

exci ta t ions  with small  Q and large ~o the use of  neutrons with high initial velocity,  thus high 

incident  energy,  is required.  Whi le  it is imposs ib le  to set 20 = 7r because  the detect ion 

sys tem shadows  the i ncoming  beam,  if 20 is close to -rr, cos(20)  is pract ical ly unity, 

jus t i fy ing the use of Eq. 7.9. 
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7.2. DYNAMIC STRUCTURE FACTOR 

7.2.1 Single-phonon scattering, 
The intensity of particles inelastically scattered by phonons is described by the phonon 
dynamic structure factor, 

S(Q, to) - 1 f N(b) 2 ~.  b~,b~ a ((eiQ(R~(0)-R~(t))))e -iwt dt (7.11) 
v,/z 

where ((--.)) represents an ensemble average. This expression is similar to Eq. 2.9, but is 
time-dependent. More detailed treatments are given, for instance, in Lovesey (1984). To 
derive this equation, we go back to Chapter 2 and derive the phase factor again (Appendix 
2.1), but including the time dependence explicitly. Such a derivation is given in 
Appendix7.1. 

To derive equations for the dynamics of particles it is useful to be able to switch 
between the time and frequency domains. This is done by a Fourier transform where we 
define the scattering function in the time-domain (called the intermediate scattering 
function) S(Q, t) as 

S(Q, co) - f S(Q, t)e -i~ dt (7.12) 
) 

where by reference to Eq. 7.11, it is clear that for phonon scattering 

S(Q, t) - 1 N(b) 2 ~-  bvbtz((eiQ(a~(~ 
v,/z 

(7.13) 

We now express the atomic position R~ in terms of the time-average and time-dependent 
deviation; 

R ~ ( t )  : ( (R~))  + u ~ ( t )  ( 7 . 1 4 )  

The intermediate scattering function (Eq. 7.13) can then be expressed as, 

1 �9 ( ( ( R , , ) ) -  ( (R~) ) )  ((eiQ �9 (u,,(o)- u~(t)))) 
S ( Q , t ) -  N(b) 2 ~ .  b~b.e iQ 

~,/.~ 

(7.15) 

and expanding the exponential in the time-average we get, 

1 �9 (((R~))- ((R,3)) { 
S(Q, t) -- N(b) 2 ~.  b~b~ e 1Q 1 + iQ-((u~(0) - u,(t))) 

1 } 
- -~{{(Q. [u~(O) - u.(t)])2}} + - - -  . (7.16) 

The linear term (the second term within the curly bracket) disappears by thermal 
averaging. If we denote the remaining first term by S0(Q, t) and third term by SI(Q, t) we 
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can write Eq. 7.16 as S(Q, t) = S0(Q, t) + SI(Q, t) + . . - .  Substituting back into Eq. 7.12 
we get 

S(Q, to) = S0(Q, to) + S1 (Q, to) + ' "  (7.17) 

with 

S0(Q, to) -- 1 �9 (((R~))- ((R~))) f iogt N(b)2 Z bvb. e '0" e- dt 
t', tz 

1 . (((R~))_ ((Rt~))) •(to) N(b) 2 ~" bvbt~ e iQ 
v, tz 

(7.18) 

where 6(to) is the usual Dirac delta-function. Thus So is everywhere zero except when 
t o - -0 ,  S0(Q, to )=  S0(Q, 0), and this first term in the expansion contains only elastic 
scattering. 

Now we consider Sl (Q, to) which after factoring the square can be written as 

S 1 (Q, w) = 1 ~ b,,bu~ eiQ. (((R~))_((R~,))) 
2N(b) 2 ~,~ 

• f[(((Q'uv(0))2)) + (((Q-u~(t))2)) - 2(((Q.uv(O))(Q.u~(t))))]e -i~ dt. (7.19) 

The first term in the integral is independent of time and can come out of the integral. The 

second term is also independent of t after thermal averaging (it is equal to the first term) 

and can also come out of the integral. Thus, as for the case of S0(Q, to), these terms 
contribute intensity only to the elastic scattering. In fact they form part of the Debye-  

Waller factor (Eq. 2.18). Thus only the third term represents the inelastic intensity. Let us 
now use the phonon coordinates, 

1 Uv(t) -- ~ ~Z ei(q((R~))-Wqt)Uq (~)  
q 

(7.20) 

where q is the phonon wavevector, toq is the frequency of the q phonon, and Uq/)(60) is its 
amplitude at the uth atom. If there is more than one atom in the unit cell Uq ~to) depends 
upon v. If we define G~,(to) - 2 .f (((Q-u~(0))(Q- u~(t))))e -i'~ dt and substitute Eq. 7.20 we 
see that, 

2 ~ ]'ei[q.((R~))_q,.((R~,))](((Q.uq)(Q.u~)e_i(O.,q,_Wq)t))e_iO., t dt G~(w) - -~ , 

2 �9 [((R,,))- ((R•))] (( (Q 
-- N Z 6 ( w -  (Oq)e iq .Uq)(Q.u~))). 

q 

(7.21) 
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By the lattice sum as in Eq. 2.10, 

- W  e 
S 1 (Q, w) - (b)2 N E 6(w - O~q)6(Q + q - K)H(Q, q) 

q 

(7.22) 

where 

H(Q, q) - E bnbm ei(Q+q)'(((Rn))-((Rm)))(((Q "Uq)(Q �9 Uq))). (7.23) 
n,m 

Here e-w is the Debye-Wal ler  factor that comes from the higher order terms and the sum 

over n and m is now over atoms in the unit cell and not all atoms in the sample. With the 

phonon operators, 

h n n + 
Uq,~ -- eq,~ x/Mtoq,~ (aq,~ + aq,~) (7.24) 

where oL denotes the phonon branch, eq,~ is the polarization unit vector, M is the atomic 
mass, and aq and a + are phonon annihilation and creation operators, Eq. 7.23 becomes, 

h2Q2 n~ma bnbm e i ( Q + q ) ( ( ( R n ) ) - ( ( R m ) ) ) ( 0  n " m -- -eq,a)(Q'eq,oL)(nq,a + 1) (7.25) 
H(Q,q)  ~Wq , , M,f~~nM~ 

where Q -  IQI and 0 -  Q/Q. The phonon density is given by the Bose-Einstein factor, 

1 (7.26) 
nq'a ehwq ,JkB T -- 1 

where kB is the Boltzmann constant. Eqs. 7.25 and 7.26 describe the intensity of neutrons 
or X-rays inelastically scattered by creating single phonons on the energy loss side. The 

delta function 6 ( w -  Wq) results in intensity from a given phonon mode appearing only at 
the energy transfer of the phonon mode frequency (times h). The delta function 8(Q + 
q - K) results in intensity from that mode appearing at a momentum transfer of K - q, i.e. 
a distance q away from a reciprocal lattice (or Bragg) point. A contour plot of S(Q, w) will 
thus exactly reproduce the phonon dispersion curves with the scattered intensity in each 
mode given by e-W/((b)2N)H(Q,q). An example of an energy scan of the inelastic 

scattering intensity is shown in Figure 7.5. Features resembling the phonon dispersion 
curves (indeed they are the phonon dispersion curves!) are clearly apparent. Actually, what 
is plotted in Figure 7.5(b) is S(Q, w) and not $1 (Q, w). The single-phonon dispersion curves 
are evident because of the happy consequence that the multi-phonon terms in the 
expansion of Eqs. 7.16(b) and 7.17 just contribute a rather featureless background intensity 

that S1 (Q, w) sits on top of, as we discuss below. 
If the dynamic structure factor is measured with a powder sample, at large Q the 

spherical averaging over Q is essentially equivalent to sampling every point in the Brillouin 

zone. Thus Eq. 7.25 yields the neutron weighted density of states. To ensure the accuracy 
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and improve statistics the data are usually integrated over a range of Q values. An example 

of the phonon density of states thus determined is shown in Figure 7.6. 

7.2.2 Multi-phonon process 

We will now go back to Eq. 7.16, and consider the effect of the higher order terms. When Q 

is small we only need to consider the leading term in the Q expansion, S1 (Q, o9), which is 
the single phonon term as seen in Eqs. 7.22 and 7.25. In the PDF analysis we cover a wide 

range of Q values. Thus it is important to have some idea of the higher order terms 

describing the multi-phonon processes. This has been discussed in some detail by Thorpe 

et al. (2002) where the second and third order terms have been calculated explicitly for the 

case offcc nickel, and powder averaged. These are shown in Figure 7.7 where it is evident 
that only the first order phonon terms have significant structure. However, note that higher 

order terms in the phonon spectrum contribute enough information to make them 

significant if PDF data are used to study lattice dynamics (Reichardt and Pintschovius, 
2001; Thorpe et al., 2002). 

While it is difficult in general to account fully for the multiple-phonon process, we can 

safely use an approximate expression, since the multiple-sum makes the Q dependence 

weak and featureless. For this purpose we note the similarity of the expansions Eq. 7.16 
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Figure 7.6. Phonon density of states of La2-xSrxCuO4 (x : 0, 0.15) determined by inelastic neutron scattering 
from LRMECS of the IPNS (McQueeney, 2002). 
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Figure 7.7. First (dotted), second (dot-dashed) and third (dot-dot-dashed) order phonon terms calculated 
explicitly for fcc nickel as it would appear in an ideal total scattering powder diffraction measurement. 

The solid line is the total phonon scattering (Thorpe et al., 2002). 

and 2.16. They are essentially the same expansion, except that Eq. 7.16 is time-dependent, 
while Eq. 2.16 is time-averaged. The next term in Eq. 7.16 is proportional to Q 4, and 

involves two-phonon scattering process. Thus if we integrate each term over energy, the 
expansion Eq. 7.16 strongly resembles Eq. 2.16. For large values of Q the prefactor in 
Eq. 7.16, which is the structure factor, approaches unity. Thus the total energy-integrated 

inelastic scattering intensity is approximated by, 

1 
Sinel(O ) - -  (((O. U)2)) --  -~ ( ( (Q .  u)4)) -~- . . .  ~ 1 - e - ( ( (Q u)2)) (7.27) 

where the Q 2 terms describes the single-phonon process, Q 4 the two-phonon process, etc. 

The contribution of each term is shown in Figure 7.7. The one phonon part is highly 
structured but the higher order terms have very little structure. This result justifies the 

expression 2.18. 
Now at high enough values of Q the dynamic correlation among atoms is lost, and the 

scattering of a high-energy probe is described by a ballistic process in which the energy 
and momentum of the probe is transferred to a single atom. For neutrons this means the 

energy loss of 

hZQ 2 
hw - (7.28) 

2M 

where M is the mass of the atom. 
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7.3. CORRELATED DYNAMICS AND THE PDF 

The phonons in materials give rise to correlations in the dynamics of atoms in real-space. 

This can be intuitively understood in the following way. The simplest model of a solid 

where the atoms are not interacting is the Einstein model. In this case every atom oscillates 

independently around its lattice site with a frequency WE. The atomic distribution functions 

are all Gaussians of the same width and the pair distribution functions (of pairs of atoms) 

will just be given by broad Gaussians of width two times the width of the atomic 
probability distributions. The PDF will consist of a series of peaks at different values of r of 

equal width, as shown in Figure 7.8(b). The simplest solid where the atoms are strongly 

interacting is a rigid-body solid where the atoms are rigidly joined (think of a solid metal 

rod joining them). In this case motions of the atoms are completely correlated and pairs of 

atoms are always separated by a fixed distance (the length of the metal rod). In this case, 

peaks in the PDF will all be delta-functions (Figure 7.8(a)). A more realistic situation is 

introduced when the atoms are joined to each other by stiff springs. In this case the usual 

treatment is to transform the problem into normal coordinates (the phonons modes), which 

are orthogonal and non-interacting, then project the phonon modes back into real-space to 

see what happens there, as we did in Section 7.2, above. This is mathematically more 

tractable but is not very intuitive. To understand intuitively what this does to the PDF 

consider our rigid body solid again, but this time cut the metal bar between each pair of 

atoms and insert a short piece of pliable rubber, the intuitive equivalent of placing a stiff 

spring there. Now we see that near neighbor pairs will tend to move in-phase as they did in 

the rigid body solid. The pair distribution will be sharp but not a delta-function because of 

Figure 7.8. Schematic of correlated atomic motions showing the resulting PDF peaks on the right. (a) Perfectly 
correlated motion results in delta-function PDF peaks (a), uncorrelated motion in broad Gaussians (b), and 

partially correlated motion in sharp peaks at low-r that broaden with increasing r (Jeong et al., 2003). 
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the presence of the soft rubber. The second neighbor pair distribution will also be fairly 

sharp but less so than the near-neighbor distribution because now we have the compliance 

of two pieces of rubber. The third neighbor motions will be less correlated still because of 

the third piece of rubber, and so on. Thus, we see that the presence of atomic interactions 

resulting in phonons introduces an r-dependence to the PDF peak width. At high pair 

separations the motions of the atom pairs asymptotes to the value appropriate for 

uncorrelated motion. This is shown in Figure 7.9 (Jeong et al., 1999) with the r- 

dependence of the peak-widths of the PDF peaks from nickel and InAs shown in Figure 

6.3. The peaks broaden with increasing r and saturate at the uncorrelated motion value. The 

amplitude of uncorrelated atomic motions is the information contained in the D e b y e -  

Waller factor. The additional information in the 1-phonon scattering gives rise to the r- 

dependent PDF peak-widths. In principle, by fitting this r-dependence we can extract 

information from the PDF about the atomic potential and the phonons. This is actually no 

different (other than practical considerations discussed below) than fitting the thermal 

diffuse scattering from powder diffraction data directly in Q-space, which was first 

attempted by Warren (1990) as early as 1952, albeit over a much wider range of Q-space. 

7.4. THE DYNAMIC PAIR CORRELATION FUNCTION (DPCF) 

Now we consider the correlated dynamics in more quantitative detail. Let us now go back to 

Eq. 7.11, and consider how to represent the lattice dynamics in real space, following 

McQueeney (1998). We will assume that the dynamic structure factor Eq. 7.11 was 

measured for a powder, and show how the dynamic correlation functions can be derived 

from them. Let us begin with the elastic intensity. In Eq. 7.11, since to - 0, t can be anything. 
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Figure 7.9. Calculated PDF of InAs neglecting motional correlations (solid line). Measured PDF of InAs at room 
temperature from X-ray data collected at CHESS (dots). Notice the low-r peaks are sharpened in the measurement 

with respect to the calculation (Jeong et al., 1999). 
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That means the dynamic correlation between the atoms u and ~ is ignored; 

1 
S(Q, 0) -- U(b) 2 ~ b~b~((eiQ'R~))((e-iQ'R~)). (7.29) 

v,/z 

Using the Debye-Waller approximation from Chapter 2 we get, 

1 -(1/2)(w.+ W~,) eiQ. (((R ~))- ((R~))). (7.30) 
S(Q, 0) - N(b) 2 ~ b~b~ e 

t,,/J, 

Thus, the Fourier-transform of S(Q, 0) gives the atomic correlations among the time- 
averaged atomic density function, or the spatial auto-correlation of the time-averaged 
atomic density, just as the Patterson function does. This is different from the 'snap-shot' 
picture that is obtained when the phonon inelastic scattering is included; for example, in the 
usual PDF obtained in an X-ray diffraction measurement. In the simple one-dimensional, 
one atomic species, solid shown in Figure 7.8(b) it results in PDF peaks that are constant in 
width with increasing-r. 

We will now discuss the inelastic term. Firstly a powder (orientational) averaging is 
performed on S(Q, w). This gives, 

e-W h2Q2 
SI(Q, w) - - - ( n ( w )  + 1) ~ ~ bvbu �9 .((<R.))_((R~,)))6( w 

N2(b) 2 2w u,~, q,a  x/Mdl//~ e~q -- tOq'a) 

X 5 [eq'a" e~'al[J~ -I- j2(QR~,)] - [l~v, �9 Eq,e t ]*[ l~u /z  " e~,a]]'2(QRv,) 

(7.31) 

where jn(X) is the spherical Bessel function of nth order, R ~ g -  I((R~))- ((R~))I, and 
1 ~ -  R~,/R~. The Fourier transform of Eq. 7.31 gives the dynamic pair correlation 
function (DPCF), 

1 
gl(r,  w) -- (b)2 ~ b~b~{F~(oo)[Ko(r - R ~ )  + K2(r - R,,~)] 

- F ~ ( t o ) K 2 ( r -  R~,~)} (7.32) 

where 

 rfo K n ( r -  R ~ )  -- ~ j n ( Q R ~ ) e -  sin(Qr)Q 3 dQ 
,IT 

(7.33) 

1 h 2 

F~( to)  - 3N 2to~/M y ,  
(n(~o) + 1) ~'. [eq,V*~- e~,~]eiqR~ r - -  O)q,c~ ) 

q,oL 

(7.34) 
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and 

1 h 2 
L 

F,,~ (m) = ~ 2 ~o~/My~ 
(n(~o) + 1 ) [ f ~ .  ~ * ^ �9 Eq,oL ] [ R ~ .  E~,oL]e iqR~c~(tO -- tOq,oL ). (7.35) 

Examples of the DPCF are given in Figures 7.10 and 7.11 for a simple diatomic molecule. 

For instance if two atoms move  in-phase, the distance between them does not change. Thus 

the DPCF should be a 6-function, not broadened by the D e b y e - W a l l e r  factor. On the other 

hand if they move out-of-phase, the DPCF peak becomes broader than estimated from the 

D e b y e - W a l l e r  factor. As we discussed in Section 7.2, near neighbors tend to move  in- 

phase, because of the low energy long wave phonons. As shown in Figures 6.3 and 7.6, the 

PDF peak widths of neighboring atoms are narrower than average. 
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Figure 7.10. The dynamical radial distribution function g(r = const, o9), evaluated at the first four pair distances 
in nickel at T = 0 K. The atomic pairs are labeled in the cubic fcc lattice as [0.5, 0.5, 0], [ 1, 0, 0], [0.5, 0.5, 1 ], 

and [ 1, 1, 0]. For each neighbor, the frequency dependence is dominated by the longitudinal 
displacement-displacement correlations. More separated neighbors tend to have more oscillations in the 

frequency dependence (McQueeney, 1998). 
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Figure 7.11. The dynamic pair correlation function (DPCF) inelastic radial functions, K~2(r) and Kto(r) + K~2(r). 
K~2(r) has a single peak at the pair distances, unlike the dynamic RDF radial function, K~(r), which has a W shape. 
Consequently, the DPCF formalism is more useful for identifying inelastic features. However, the DPCF peak 

has a long tail on the low-r side, making it difficult to determine the strength of atomic correlation 
(McQueeney, 1998). 

7.5. EFFECT OF INELASTIC SCATTERING ON THE PDF 

7.5.1 Phonon dispersion and the PDF 
As early as 1952 attempts were made to extract phonon dispersions from X-ray powder 

diffraction data (Warren, 1990). It was quickly realized that the extensive powder 

averaging made this difficult and attention was switched to fitting thermal diffuse 

scattering from single crystals (Warren, 1990), and ultimately, with the advent of inelastic 

neutron scattering, to measure them directly. However, there is still great interest in the 
possibility of extracting atomic potential parameters and phonon information from powder 

data in cases where single crystals are not available or where data need to be measured in 

special environments such as high pressure cells. Powder diffraction has also traditionally 

had an advantage in phase diagram studies because of the relative ease of measuring and 
analyzing multiple data sets collected as a function of temperature and composition. In 

these cases, extracting phonon information from powder data would facilitate studies of, 

for example, phonon softening. One of the problems of the early studies was that the 

powder data were studied over a relatively narrow range of Q-space. Since the phonon 

intensity, SI(Q, to), contributes relatively little to the total measured intensity it is 

necessary to measure S(Q) over a wide range of Q with very good statistics to make 

progress. This happens as a fairly natural consequence of taking data to obtain the PDF as 

we discussed in detail in Chapter 5. Interest has therefore recently been reawaken in the 
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possibility of extracting phonon information from PDF-quality data measured at modem 

sources using modem techniques. Initial claims that force-constant variables could be 

measured with the same accuracy as possible from INS (Dimitrov et al., 1999) are 

controversial (Jeong et al., 1999; Reichardt and Pintschovius, 2001; Thorpe et al., 2002; 

Graf et al., 2002). Nonetheless, significant information about the atomic potential is 

present in the PDF (Jeong et al., 2003; Graf et al., 2002), the only question is how many 

variables can reasonably be extracted and with what accuracy. Work needs to be done to 
improve the accuracy of determining S(Q) and at present it is not clear how much impact 

this kind of study will have in the future. We also note that with the use of high-energy X- 

ray diffraction it is becoming much quicker and easier to measure the thermal diffuse 

scattering from single crystals directly (Holt et al., 1999). 

7.5.2 Placzek correction 
We now discuss another consequence of the presence of phonon inelastic scattering in 

regular powder diffraction measurements where the inelastic scattering is not explicitly 

resolved. As we discussed in Chapter 5, this results in distortions to the measured PDF 

from neutron diffraction. An empirical correction, often referred to as the Placzek 

correction (Placzek, 1952), is generally applied to correct the data for these distortions, and 

this is discussed below. 
Let us first look at the case of X-ray scattering. It is often claimed that 'since the X-rays 

are so fast that X-ray diffraction is a snap-shot of the structure' (e.g. Warren, 1990). While 

this statement is not altogether wrong, it is extremely misleading. As we mentioned earlier 

X-ray inelastic scattering measurements are now becoming a reality, and even the lattice 

dynamics can be studied by X-ray scattering. We will show at first that the 'speed' of the 

measurement is not determined by the velocity of the probe, but by the energy resolution of 

the spectrometer. The velocity of the probe is relevant only in setting up the effective 

energy resolution when an energy analyzer is not used in the diffractometer. 
In the derivation leading to Eq. 7.32 we assumed that both Q and to are well defined. 

However, in any real measurement the energy resolution is finite, thus what is measured is 

the dynamic structure factor integrated over a certain energy range, 

Sooo (Q, to) - ~ W(to, aJ)S(Q, w~)dw ~ (7.36) 

where W(to, to~) is a resolution (window) function centered around to. As long as the 

resolution function is much narrower than the excitation energy the dynamic structure 

factor can be experimentally determined. However, in the conventional X-ray powder 

scattering experiment the energy resolution is in the range 10-1000 eV (depending on the 
measurement), far larger than the phonon energies. Using an analyzer crystal in a standard 

geometry the --~ 10 eV resolution is sufficient to discriminate much of the electronic 

inelastic (Compton) scattering, but not the phonon scattering. Therefore the nominally 
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'elastic' X-ray scattering intensity includes the inelastic scattering contribution due to 

phonons. Now the velocity of light becomes important only here; since the velocity of light 

is high, the momentum transfer associated with the energy transfer of 10 eV is very small 
(--- 10 -3 ~ -1)  compared to the reciprocal lattice vector (--- 1 A-1). Thus the magnitudes of 

kinit and kfinal are  very close to each other, and Q is practically independent of w. Since 
W(~o) is constant over the relevant range of o~ (the window function is much wider than the 

phonon band width) from Eq. 7.11 we get, 

1 If  S(Q) = N(b) 2 ~. b~b~, ((eiQ'(R~(0)-R~'(t))))e -i~~ dt  dw 
v,/z 

1 
- N(b)2 Z b~b~,((eiQ'~R"~~176 �9 (7.37) 

v,/z 

Thus S(Q) measures the instantaneous (same time) correlation. This is the other extreme 

than Eq. 7.30, and justifies the common declaration that the X-ray diffraction takes the 

'snap-shot' of the atomic configuration. The snap-shots, however, are continuously taken, 

and time averaged. In that sense the 'snap-shot' is not really an appropriate expression, and 

students are often confused on this point. It is, therefore, more accurate to call S(Q) the 

same-time correlation function. As we discussed above, this results in the correlated 

dynamics appearing in the PDF and yields r-dependent peak-widths. 
Neutrons, on the other hand, have velocities that are much slower than the speed of 

light, and are even comparable to the velocity of atoms. Thus for neutron scattering the 

magnitudes of kinit and kfinal can be significantly different, and for a fixed scattering angle 
Q is dependant upon w as in Eq. 7.7. This causes a problem for a neutron powder 

diffraction measurement in which the actual energy and momentum transfers are not 

measured. In the powder diffraction measurement using a reactor only the initial energy is 

defined by a monochromator, while the final energy is not measured. In the tof 
measurement only the total time of flight is recorded, and neither the initial nor final 

energies are actually measured. To circumvent this problem what is usually done is to 
assume the momentum transfer of Q0 for every scattering process, elastic or inelastic, and 

make appropriate corrections later. This correction is known as the Placzek correction 

(Placzek, 1952). 

In the Placzek correction the neutron is assumed to have a high-energy and to be 
scattered by an atom ballistically, that means that the energy lost by a neutron is transferred 

entirely to the kinetic energy of the atom, 

h 2 12 Iqinit 12) 
ho~  - -  ~ ( I q f i n a l  - (7.38) 

Q - -  qini t  - qfinal  

where qinit and qfinal are the momenta of the atom before and after scattering. In this case the 
energy transfer depends only on the atomic mass M, and not on the restoring force 
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represented by the Debye temperature (and therefore is independent of the underlying 

potential). In spite of such a simplification the Placzek correction works well most of the 

time. 
The Placzek correction was developed for a triple-axis-spectrometer in which the 

energy of incident neutrons is fixed. By assuming that the energy of the incident neutron is 

much larger than the energy transfer, from Eq. 7.7 we obtain, 

1/2 (2m ) 
O 2 - 2 k ~ -  2mw _ 2 k ~ c o s 2 0  1 -  h hk~ 

= 2 g  - 2moo _ 2k 2cos20 1 -  = + - - .  
h 

( ) = 4 k i  2sin 2 0  1 -  ~ + ' "  

(7.39) 

and 

( ) Q - 2 k i s i n O  1 -  2h--~i 2 + . - -  . (7.40) 

If we neglect the initial velocity of the atom the kinetic energy gain of the atom due to the 

momentum transfer of Q is, 
h2 Q2 

hco - ~ (7.41) 

where M is the atomic mass. Thus we obtain the first order shift in Q, 

AQ -moo 
_ _ - m  sin2 0 + - - -  (7.42) 

Qo 2hk2 M 

From this we see that the Placzek shift becomes important at high scattering angles. 

In the case of the tof measurement it is more complex because the result depends upon 

the neutron flight path length from the target to the sample, L1, and that from the sample to 

the detector, L2. The time-of-flight, ~-, is the sum of the flight times over La and L2 with the 

velocities V l and v2, respectively, 

L1 L2 mL1 mL2 
~- -- - -  -~ -- ~ . (7.43) 

Vl V2 hkinit hkfinal 

Thus the nominal momentum, k0, is given by, 

m L  1 
k0 = h ~" L1 L2 (7.44) 

§ 
Zkinit Lkfinal 

where L = L1 + L2. The nominal momentum transfer, Qo, calculated assuming elastic 

scattering, is given by 
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2 sin 0 
Qo = 2ko sin 0 -  L1 L2 . (7.45) 

Lkinit Lkfinal 

Combining Eq. 7.44 with Eqs. 7.4 and 7.5 the relationship between the nominal 
momentum transfer and the real momentum transfer is obtained. Since usually L1 >> L2 for 

most spectrometers, Eq. 7.44 can be expanded into, 

2kinit sin 0 
-- . (7.46) 

Q 0 -  /-,2( kinit - 1 )  
1 + -~- kfina ! 

If we further assume hto << h2k2/2m, then, 

Qo = 2kinit sin O - 2kinit sin O( 1 L2 mto ) 
1-~ /-~ mto ~ h~i2ni t + - . . . .  (7.47) 

L hk2nit 

From Eq. 7.40, 

Q - - Q o ( 1 - ( 1  - 2L2 L ) 6 + . . - )  (7.48) 

where 

mto 
6 -- (7.49) 

2hk~ni t " 

The main effect of the Placzek correction for the tofmeasurement is to correct the spectrum 
of the incident energies, since the normalization is usually done assuming elastic scattering 
alone. Incidentally, from Eq. 7.48 it is obvious that the first order Placzek correction 

vanishes if L 2 ---- L/2, or L l = L 2. However, the price to pay is the large size of the detector 
housing and the large angle the spectrometer takes up around the source. In terms of 

financial cost and real estate it is an expensive proposition. 

7.5.3 Local lattice dynamics and the PDF 
For regular phonons the Placzek shift has relatively little effect. The Placzek shift is 

important for strongly dispersing phonons, but they are usually low energy phonons so that 
the shift is small, whereas the high-energy phonons for which the shift is large usually have 

small dispersion. Since it is difficult to evaluate the effect analytically, the expected 
intensity was calculated numerically for a simple case of a diatomic molecule vibrating 
with the frequency to (McQueeney, 1996). The result is summarized as follows: 

1. If the frequency of the local vibration, to, is less than tomin the vibration appears static 
and the same-time correlation function is recovered approximately undistorted. 
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2. For  O)mi n < (.0 < O)max, distort ions to the PDF are obse rved  that are dependen t  on the 

detector  angle  0. 

3. For  w > O)ma x there is no angle  dependence  to the P D F  but  the t ime-ave raged  

corre la t ion funct ion is recovered .  

The  values  of  (,Omi n and COma x depend  upon  the in tera tomic  dis tance  and the des ign of  the 

spect rometer ,  but  for the in tera tomic  dis tance of  3 ,~ and using the g e o m e t r y  of  the G L A D  

dif f ractometer  at IPNS, they are es t imated  to be about  ha~mi n "~ 5 m e V  and ho)ma x ~ 30 

meV.  Thus the exci ta t ions  in the range  of  1 0 - 2 0  m e V  produce  a n o m a l o u s  effects. The  

effects on the PDF f rom the ca lcula ted  d ia tomic  mo lecu l e  are shown  in Figure  7.12 
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Figure 7.12. Time-of-flight PDF' s calculated for several frequencies (hco = 10, 30, 50, 70 meV) of the hopping 
diatomic molecule with the atomic separation, d = 3 A, and displacement, A = 0.02 ,~. The diffractometer 

configuration is L1/La = 10 and 20 = 90 ~ (left). Instantaneous PDF's for a hopping diatomic molecule whose 
atoms oscillate out-of-phase by ~o (right) (McQueeney, 1996). 
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Figure  7.13. The dependence of the PDF on the detector angle in the case of local dynamics (see text) (Louca and 

Egami, 1999). 

(McQueeney, 1996). An example of detector angle dependence of the PDF is shown in 

Figure 7.13, for Lao.8Sro.zMnO3 (Louca and Egami, 1999). 

7.5.4 ltybrid techniques 
The measurement of S(Q, to) with a monochromatic incident beam is inefficient since only 
a small portion of the incident spectrum is utilized in the incident beam. On the other hand 

regular tof neutron powder diffraction to determine S(Q) is subject to the distortions 
described above. It is useful to consider a possible hybrid technique somewhere between 
the two. For a powder sample the dynamic structure factor depends only on the magnitude 

of Q, not on the direction, thus S(Q, to) is the same for all the detectors. For truly elastic 
scattering every detector measures the same S(Q, 0). Thus, assuming all angle dependent 
corrections are adequately carried out, any deviation in the measured S(Q) among the 
detectors originates from the dynamic scattering. In principle, S(Q, to) can then be 

reconstructed from the measured S(Q) in each of the detectors. The reconstruction 
approach is called computed tomography and has been discussed by Johnson (1986). 
However, it requires a massive computational effort and the accuracy of the outcome is 

difficult to estimate. Another drawback is that in established diffractometers the distortions 
to S(Q) are not really extensive enough (good news for measuring regular PDFs!). The 
method relies on the inelastic scattering from different detectors being integrated along 
distinct loci in (Q, to)-space. Reference to Figure 5.9 shows that, except for very low angle 
detectors, the loci for detectors at different angles are rather similar to each other limiting 

the information available for the reconstruction. 
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A simpler compromise is to use a nearly monochromatic  incident beam, but with a 

relatively wide momentum spectrum, P(Ak i, kio), where kio is the average momen tum and 

Ak i --- k i - k i 0 .  Such a beam can be produced by a chopper with a wide aperture: a sloppy 

chopper. The use of a wide aperture increases the measured intensity. Then the detected 

intensity is given by 

=- I P(Aki, kio)S(ki, kf)dAki (7.50) 
f .  

l(t, o) 
J 

where S(Q, to) is expressed in terms of ki and kf. From Eq. 7.41, kf = kfo + Akf, where 

1 _ h t  _ L 1  (7.51) 
kf0 mL2 L2ki0 

and 

Like0 
Ak f  - L2k2 0 A k  i. (7.52) 

Now from Eqs. 7.3 and 7.5, 

h 2 
hto = htoo 4- - - ( k f o  Akf - kioAki) (7.53) 

m 

Q2 = Q2 4- 2(kio - kfo cos 20)Aki 4- 2(kfo - ki 0 cos 20)Akf (7.54) 

where 

h 2 
htoo = ~m (k2o - k2o) (7.55) 

and 

Q2 _ kf2o 4- k2o _ 2kfoki ~ cos 20 

Thus S(Q, to) can be expanded in terms of AQ = Q-Qo and Ato = to-too, 

0S 0S Ato S(Q, to) -- S(Qo, too) + - ~  AQ 4- ----~ 

~- u ( A Q )  2 u w  (Ato) 2 ~)---~ ~)---~ + 

where 

Ato = __h (kf 0 Akf - kio Aki) 
m 

1 
AQ -- -~-[(kio - kfo cos 20)Ak i 4- (kfo - kio cos 20)Akf] 

~do 

(7.56) 

(7.57) 

(7.58) 

(7.59) 
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Now we define the moments of P(Aki, ki0), 

Ko=fe(Aki,  kio)dAki=l, Kl:~P(Aki ,  kio)AkidAki--O 
(7.60) 

- -  J P(Aki, kio)(Aki)ZdAki K2 

where we assumed that P(Aki, ki0 ) is a symmetric function. Then Eq. 7.50 is given by, 

l(t, O) = S(Qo, O9o) + Kz(A0 + A1 cos 20 + A 2 cos 2 20) (7.61) 

where Ao, A I and A2 can be determined from Eqs. 7.52-7.59. Thus the dependence of 
I(t, O) on cos 20 and the continuity condition for S(Q, oo) yield the coefficients dS/dQ, etc. 
These can be used in refining S(Q, w) with the accuracy higher than the initial resolution 
warranted. In this method, using a forgiving energy resolution increases the count rate and 
reduces statistical noise, and S(Q, w) can be determined with higher accuracy. 

A P P E N D I X  7.1.  D Y N A M I C  S T R U C T U R E  F A C T O R  

AT.I.I Simple derivation 
In Chapter 7 we introduced the dynamical structure factor Eq. 7.1 1, 

S(Q, w) _ N(b) 21 Z b~bu ~ ((eiQ(RA0)-Ru(t))))e -i~ (A7.1.1) 
v,/x 

As in the case of static structure function (sample scattering amplitude), this equation can 
be derived by comparing the phases of the incoming and outgoing waves, by explicitly 
including time dependence. The incoming wave is expressed by, 

~ i n i t  (r, t) = e i(kinitr-~ (A7.1.2) 

The scattered wave is 

Xkfinal (r, t) = A e i(kfinalr-t~ (A7.1.3) 

Here the amplitude A is independent of time. Otherwise the scattered wave (Eq. A7.1.3) 
would not have the energy of ho)final. Thus, at the point of scattering by the atom v at time 
{, taking into account that the position of the atom, R~, changes with time, the continuity 
condition is 

/~/kfina I (R~(t'), t') - -  nl~)kini  t (R~(t'), t') 
A e i(kfinalRv(fl)-~ - -  B e i(kinitRv(t/)-c~ 

(A7.1.4) 
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Thus, 

A -- B e i[(kinit-kfinal)Rv(tt)-(t~176 = B e i(QR~(d)-wt~) (A7.1.5) 

Therefore the scattering amplitude for inelastic scattering at time { is given by, 

1 
~(Q, t') = ~ ~ by ei(QaA)-~~ (A7.1.6) 

At the time of observation, t, all the scattering incidents in the past have to be integrated 
over time t t, 

~(Q, to) - f ~(Q, t')d{ - 
1 

(b) ~ by f ei(QR"(t)-'~ (A7.1.7) 

The dynamical structure factor is defined by 

1 
S(Q, to) = ~ I~(Q, o9)12. (A7.1.8) 

Thus, 

S(Q, to) = ~ ~(Q, t') a/t* (Q, t")dt' dt" 

1 II I N(b)2 E b~,b~ ei(QR"(t')-~~ t e-i(QRAt")-~~ 

1 II 
= N(b)2 Z b~b. eiQ[R~C)-R~C')]e-iwC-t")dt t dt" 

v,/z 

_ 1 N ( b )  2 E b~b~ ffeiQ[R~(/l-R~(t-t~)]eimtdttdt 
t.', t z  

_ 1 ~ ((eiQ[R~(0)_R~(t)] -- N(b)2 Z bvb ~ ))e i~ 
v,t.6 

(A7.1.9) 

The last step uses the fact that the time average (over {) is equal to the ensemble 
(thermal) average. 
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Chapter 8 
Structure of Well-Ordered Crystals 

8.1. PDF OF IDEAL AND DISTORTED PEROVSKITES 

In earlier chapters, we have already shown some simple examples of the application of the 

PDF technique for elementary metals such as fcc, Ni or A1, and the pseudo-binary 

compounds (Ga,In)As, as well as some highlights from recent PDF studies. In this chapter, 

we focus on oxides based upon the perovskite structure. Perovskite, ABO3, is one of the 

most common oxide structures. In the ideal state it has a cubic unit cell, with an A-site at 

the center of the cube, B-sites at the comers, and oxygen ions at the edge centers. 

Equivalently, we can place a B-site ion at the center of the cube, A-site ions at comers, and 

oxygen ions at the face-centers (Figure 8.1). The B-site ion is characterized as having six 

oxygen nearest neighbors and residing in a BO6 octahedron (Figure 8.2(a)). The A-site ion 

has 12 oxygen neighbors (Figure 8.2(b)). A very large number of oxide compounds have a 

structure that is a derivative of perovskite. In the ideal cubic structure the A - O  and O - O  

bonds have to be equal in length, and have to be v/2 times longer than the B - O  bond that is 

Figure 8.1. Picture of the perovskite structure. B-site ions (in this case Mn indicated in red) sit at the center of 
oxygen (blue) octahedra. The A-site (green) resides in the cavities made by the network of octahedra. 

277 
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(a) (b) 

W W 

Figure 8.2. Coordination of the A and B site ions shown more explicitly. (a) BO6 octahedron, (b) AO12 cluster. 

the shortest bond. However, only in exceptional cases do the bond-lengths have such a 

ratio�9 If the ratio between the A - O  and B - O  bond lengths is not equal to x/~, an ideal 

perovskite cannot be formed, and the structure becomes distorted�9 It is customary to 

express this balance in terms of the tolerance factor, 

RA_O 
t =  x/~RB_ O (8.1) 

The bond-length between two ions is, to a good approximation, the sum of their 'ionic 

radii', which is empirically specified for given valence and coordination (Shannon, 1976; 

Shannon and Prewitt, 1969). Thus in order to satisfy the condition for the ideal perovskite 

structure the ionic radius of the A ion has to be equal to that of oxygen (Ro -- 1.40 A), and 

the radius of the B ion has to be (x/r2 -- 1)Ro -- 0.58 A. This condition strongly limits the 

choice of ions, so that almost all perovskite compounds have a distorted structure. When t 

is less than unity most commonly the BO6 octahedra become tilted, often around the [ 111 ] 
axis, and the structure becomes rhombohedral. 

As we see below the BO6 octahedron tends to behave as a unit, and its rotation or tilting 

is often a key to define the structure. A detailed analysis of the different classes and 

space-groups of octahedrally tilted perovskite structures has been given by Woodward 

(1997a,b). For instance, tilting of a BO6 octahedron induces tilting of the adjacent BO6 
octahedron in the opposite sense resulting in a doubling of the unit cell. This often results 

in anti-ferroelectric or ferroelastic behavior. On the other hand, if t is greater than unity the 

BO6 octahedron will be distorted, becoming usually elongated. Some of the B-site ions, 

such as Ti 4+ or W 6+, have a tendency to become off-centered, resulting in ferroelectricity. 

In addition some A-site ions, such as Pb 2+ or Li +, prefer directional bonding with oxygen 

ions, and an asymmetric A-site environment, enhancing the ferroelectric polarization 

(e.g. see Cohen, 1992). In this way the ionic size has a direct consequence on the properties 
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of the compounds. A major goal of solid-state chemistry is to understand these structure- 

property relationships in the quest to design new compounds. 

8.1.1 Structure of SrTi03 

SrTiO3 (STO) is a prototypical perovskite with the ideal perovskite structure at room 

temperature. Indeed the tolerance factor of STO is very close to unity (t = 1.02). Below 

110 K, however, the structure deviates very slightly from cubic and becomes 

rhombohedral. The PDF of STO determined by pulsed neutron scattering at T = 10 K is 

shown in Figure 8.3 (Louca and Egami, 1999). The Glass-Liquid-Amorphous- 

Diffractometer (GLAD) of the IPNS was used for this measurement. A powder of STO 

weighing 15 g was sealed in a vanadium can with He exchange gas. The measurement took 

5 h with a beam current of 14 txA. The PDF shown in Figure 8.3 has a negative first peak. 

This is because the neutron scattering length, b, is negative for Ti and positive for O so, as a 

result of Eq. 3.5, the T i - O  peak appears negative. The PDF compares very well with the 

calculated PDF with the thermal amplitude of 0.07 .~. The magnitude of the thermal factor 

is consistent with the Debye temperature of this solid. The distances and the coordination 

numbers obtained by integrating the RDF over the peak are shown in Table 8.1, and agree 

well with the values expected for the structure. Since the peaks start to overlap beyond the 

second peak, and positive and negative peaks cancel each other, the coordination number 

of high order peaks cannot be determined by direct integration. However, agreement of the 

PDF with the model PDF indicates that the PDF is accurate over the range shown. 

I ' I ' I ' I ' I ' I ' I ' I ' 

1 
o e x p e r i m e n t  

�9 - - m o d e l  p e r o v s k i t e  
0.8 
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~ 0.2 

0.0 

-0.2 
SrTiO 3 

-0.4 
, I , I , I , , I , I , I , I 

2 3 4 5 6 7 8 9 10 

r[Al  

Figure 8.3. Pulsed neutron PDF of SrTiO3 at T = 10 K (Louca and Egami, 1999). 
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Table 8.1. Peak positions and number of first and second neighbors in SrTiO3 expected from the crystal structure 
and measured directly (in a model independent way) from the PDF. 

Peak position (,~) Number of neighbors 

Compound Coordination shell Expected M e a s u r e d  E x p e c t e d  Measured 

SrTiO3 First (Ti-O) 1.95 1.95 6 5.97 
Second (O-O, Sr-O) 2.77 2.77 36 36.87 

8.1.2 Structure o f  BaTi03 

BaTiO3 is another prototypical ferroelectric perovskite and is one of the most heavily 

studied materials (Kwei et al., 1993, and references therein). At high temperature it has a 

centrosymmetric cubic structure but on cooling it undergoes a series of distortive phase 

transitions into ferroelectric phases with the ferroelectric polarization vector along [001] 

(below 393 K, tetragonal) [011] (below 278 K, orthorhombic) and [111] (below 183 K, 

rhombohedral). These distortions are shown schematically in Figure 8.4. A long-standing 

controversy existed about the structure of this material that is highly pertinent to the 

discussions of this book. In each of the distorted phases crystallography revealed small 

atomic displacements of Ti and O along the directions of the polarization vectors (Kwei 

et al., 1993). On the other hand, X-ray diffuse scattering (total scattering) measurements 

indicated that the atomic displacements of Ti were always along [111] directions 

Cubic Tetragonal 

j J  

Orthorhombic Rhombohedral 
Figure 8.4. Schematic diagrams of the distortive phase transitions in BaTiO3 on lowering temperature. The arrow 

indicates the direction along which the cubic unit cell is distorted, and also the direction of the ferroelectric 
polarization. The larger unit-cell superimposed in the orthorhombic case shows the relationship of the 

crystallographic orthorhombic unit cell to the distorted pseudo-cubic cell (Kwei et al., 1993). 
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corresponding to the eight faces of the TiO6 octahedra (Comes et al., 1968, 1970). As the 
sample changed temperature the relative occupancies of the different displaced sites 
changed. Thus, in the low-temperature rhombohedral phase only one of the eight displaced 
sites was preferred, in the orthorhombic variant two out of the eight, in the tetragonal 
variant, four of the eight and in the high-temperature cubic all eight are equally populated 
(presumably dynamically). This result was somewhat controversial because BaTiO3 was 
considered to be an archetypal phonon soft-mode material where the distortive phase 
transitions happened by the condensation of an unstable phonon mode (Jona and Shirane, 
1962). This is discussed much more fully in Chapter 11. The local structural measurements 
that indicated a significant order-disorder component to the phase transition tended to 
muddy this elegant and simple soft-mode picture. As is discussed in Chapter 11, length- 
scales and time-scales need to be handled carefully, and models that explain the evolution 
of average properties at phase transitions do not necessarily explain well the actual local 
structure, and this is clearly the case here. PDF measurements of these materials tend to 
support the Comes et al. (1968, 1970) picture at the local level since changes in the local 
structure at these phase transitions are very small (Kwei et al., 1995) as shown in Figure 8.5. 
This result can be understood if atomic displacements (to which the PDF is rather sensitive) 
are not changing significantly but ordering between the displaced sites (to which the PDF is 
rather insensitive) is changing. 

8.1.3 Structure o f  PbTi03 

PbTiO3 (PT) is cubic at high temperatures, but it becomes ferroelectric below Tc and the 
structure distorts to tetragonal. The ionic radius of Pb 2+ is 1.49 ,~ and that of Ti 4+ is 
0.605 ,~. Thus the tolerance factor is equal to 1.019. However, in this case the tolerance 
factor is less important in determining the crystal structure. What is most important is the 
asymmetry of the atomic bonds for both Pb and Ti. Pb 2+ has the electron configuration of 
(Xe)(4f)14(6d)l~ 2, and the two s electrons tend to form directional bonds by hybridizing 
with the oxygen p-orbitals. Consequently Pb 2+ becomes off-centered in the oxygen cage of 
PbO12 resulting in shorter and longer Pb -O bonds of 2.54, 2.8 and 3.2/k. Ti 4+, on the other 
hand, is ferroelectrically active, and tends also to become off-centered in the TiO6 
octahedra with bonds of 1.78, 1.97 and 2.37 A. As a result of these off-centering tendencies 
PT becomes strongly ferroelectric, with a tetragonal distortion. The bond distances 
determined from the PDF and those from the crystallographic structure show good 
agreement (Dmowski et al., 2002). The PDF method is an excellent technique to study 
ferroelectricity. Local polarization produces different metal-oxygen bond distances that 
induce the splitting of the metal-oxygen PDF peak. As shown in Figure 8.6 (Kwei et al., 

1995), at low temperatures the three kinds of T i -O  bonds are clearly evident, while in an 
ideal perovskite structure (Figure 8.1) there is only one distance between a B-site metal and 
its closest oxygen. The splitting of the T i -O  distance in Figure 8.6 indicates a strong 
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Figure 8.5. PDFs of BaTiO3 on passing through the (a) rhombohedral to orthorhombic and (b) orthorhombic to 
tetragonal phase transitions shown in Figure 8.4. Data above (below) the transition are solid (dashed) lines. 

A difference curve is shown below the data. Changes in the local structure are very small 
at these transitions (Kwei et al., 1995). 

ferroelectric polarization of Ti in the TiO6 octahedron. If we take Ti as the origin, at low 

temperatures Pb is displaced from the ideal position by 0.2.4, along the c-axis and oxygen 

by 0.3 A in the opposite direction. Thus both Ti and Pb are strongly off-centered within the 

oxygen cage, and contribute to the ferroelectric dipolar moment. 

8.1.4 Structure of LaMn03 

Another example of a distorted perovskite is the Jahn-Teller distorted compound 

LaMnO3. The tolerance factor of this compound is 0.986, and as a consequence MnO6 
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Figure 8.6. Pulsed neutron PDFs of PbTiO3 at T = 10 K. Solid line is a model calculation using the tetragonal 
structure, dashed line indicates the data. A difference curve is shown below the data. (b) shows the PDF on 
an expanded scale to emphasize the near-neighbor Ti-O atom pairs. The vertical lines indicate the lengths 

of the six Ti-O bonds in a 1-4-1 configuration (Kwei et al., 1995). 

octahedra are rotated around the [111] axis. However ,  what  makes this compound  

interesting is a further distortion due to the Jahn-Teller effect. In LaMnO3 Mn is tr ivalent 

and has four d-electrons. The nearly cubic crystal-field splits the d-level into t2g (triplet) 

and eg (doublet) levels. The exchange coupling among  the d-electrons (Hund coupling) is 

stronger than the crystal-field splitting, so that these d-electrons are fully spin polar ized 

(the high-spin state). Thus the majority spin t2g level is filled and the eg orbital is singly 

occupied. The eg level is further split into two by a J a h n - T e l l e r  (JT) distortion that 
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elongates the MnO6 octahedra (Figure 1.8, Proffen et al., 1999). As a result of the JT 

distortion the M n - O  bond distances are grouped into four short (1.92 and 1.97 * )  and two 

long (2.16 A) bonds (Proffen et al., 1999). LaMnO3 has the orthorhombic (Pnma) structure 

(Mitchell et al., 1996; Rodrfguez-Carvajal et al., 1998; Lebedev et al., 1998; Proffen et al., 

1999; Louca et al., 2000). In this structure the JT distortion is oriented in the a - b  plane 

with alternating directions (antiferromagnetic orbital ordering). With an excess of oxygen 

that creates vacancies at the cation sites the structure changes to rhombohedral (R3C) 

symmetry in which all six M n - O  bonds are equal in length. 

As we discussed in Chapter 1, conventional crystallographic methods are capable of 

obtaining the lattice constants with impressive accuracy since they are determined directly 

by the posi t ion of the Bragg peaks in Q space that can be located very precisely. However, 

for a complex crystal that has a number of atoms within the unit cell, the determination of 

the atomic positions is a much less precise operation since they are determined by the 

intensities, not the positions, of the Bragg peaks. The PDF method has several advantages 

over the crystallographic methods in determining the atomic positions in such a case. 

Firstly, by incorporating the scattering information from high Q values the real-space 

positional accuracy is improved. Secondly, by including the diffuse scattering, various 

dynamic effects such as vibrational anharmonicity are explicitly taken into account. 

LaMnO3 provided a nice example from a well-ordered crystal where structural 

parameters determined from the PDF and using Rietveld refinement of the same powder 

diffraction data could be compared (Proffen et al., 1999). (Another excellent example is 

Table 8.2. Structural data of LaMnO3 (Pbnm) from the Rietveld refinement and two PDF refinements, A and B, 
which vary in the range of r fit (see Proffen et al., 1999 for details). 

Rietveld Refinement A Refinement B 

a 5.542(1) 5.5422(7) 5.557(1) 
b 5.732(1) 5.7437(8) 5.774(1) 
c 7.6832(2) 7.690( 1 ) 7.712(2) 
x(La ) - 0.0068(3 ) - 0.0073(2) -0.0068( 2 ) 
y(La) 0.0501(3) 0.0488(2) 0.0504( 1 ) 
(u 2)(La) 0.0022(4) 0.00199(4) 0.00177(4) 
(u 2)(Mn) 0.0011 (6) 0.00067(7) 0.00071 (7) 
x(O1) 0.0746(4) 0.0729(3) 0.0734(2) 
y(O 1 ) 0.4873(4) 0.4857 (3) 0.4800(2 ) 
(u 2)(01) 0.0031(5) 0.00233(7) 0.00178(5) 
x(02) 0.7243(3) 0.7247(3) 0.7232(2) 
y(O2) 0.3040(3) 0.3068(3) 0.3060(1) 
z(O2) 0.0390(2) 0.0388(3) 0.0369(2) 
(u 2)(02) 0.0030(4) 0.00378(5) 0.00439(4) 
Rwp 12.1 16.2 9.1 

La and O1 are on (x, y, 0.25), Mn is on (0,0.5,0), and 02  is on (x, y, z). The units for the lattice parameters are A, and for values of (u 2),/~2. The numbers 

in parentheses are the estimated standard deviation on the last digit. Note the overall good agreement. 
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found in Teslic and Egami (1998) on the structure of PbZrO3, described in Section 8.2.) 

The measured PDF and the best-fit model are shown in Figure 1.8 with a difference curve 

underneath. The refined structural parameters are reproduced in Table 8.2. Clearly the 

agreement between Rietveld and PDF refined atomic positional parameters is excellent 

indicating that the PDF yields quantitatively accurate atomic positions when fit with an 

adequate model. 1 PDF refined thermal factors are also in good agreement and, in general, 

are smaller in the PDF refinements. Because the data used in the PDF-fits extend over a 

wider range of Q, refined thermal factors from PDF-fits are often more stable and give 

more physical values (e.g. see Gutmann et al., 2000, and the discussion in Section 8.2.1, 

Teslic and Egami, 1998). 

8.2. COMPLEX PERIODIC STRUCTURE: ANTIFERROELECTRIC LEAD ZIRCONATE 

8.2.1 Low temperature phase 
Lead zirconate (PbZrO3, PZ) is an end member  of the family of a well-known ferroelectric 

oxide solid solution, PbZrl-xTixO3 (PZT). PZT is used as a ferroelectric or piezoelectric 

material in a wide variety of technological applications. Nevertheless, there have been 

raging controversies regarding the dielectric properties and atomic structure of PZ. The 

tolerance factor is equal to 0.973, so that ZrO6 octahedra are expected to be tilted or 

rotated. In addition the polarizability of Pb, as discussed above, is expected to contribute to 

the distortion. Indeed, its structure is based upon the distorted and tilted perovskite but is 

rather complex with eight perovskite units forming the unit cell structure containing 40 

atoms. Two different symmetries have been proposed; non-centrosymmetric (ferroelectric, 

FE) Pba2 (Jona et al., 1951), and centrosymmetric (antiferroelectric, AFE) Pbam 
(Fujishita et al., 1982). A recent total electron energy calculation using the local density 

approximation (LDA) demonstrated the coexistence of both FE and AFE instabilities in 

PZ, with a very delicate balance between them (Singh, 1995). In addition there is a 

possibility of a second high temperature phase with an unknown structure and ordering 

over a narrow temperature range near 510 K. 

A powder pulsed neutron diffraction measurement  was carried out at various 

temperatures, and the results were analyzed using both the Rietveld refinement method 

and the PDF analysis (Teslic and Egami, 1998). The neutron diffraction data were obtained 

using the Special Environment Powder Diffractometer (SEPD) at the IPNS. The sample, 

weighing 14.5 g, was sealed in a vanadium sample holder with He-exchange gas and cooled 

1 Note that he estimated standard deviations (e.s.d.) on the refined quantities are likely to be underestimates. 
This is a known problem with e.s.d, from Rietveld (D.E. Cox, private communication). In addition to these known 
problems of estimating reliable e.s.d, from non-linear least-squares refinements, the e.s.d, determined from the 
PDF data have not been corrected for statistical correlations in the data, as discussed in Appendix 5.3. These 
problems do not affect the accuracy of determining the values themselves, but only of determining their e.s.d. 
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using a closed-loop He refrigerator for the low temperature measurements. For the high 

temperature measurements the sample was sealed in a vanadium holder and heated using a 

vanadium furnace, and data were collected up to 523 K. The duration of each run was 

approximately 4 h per temperature point. Diffraction intensities were first analyzed by the 

Rietveld method using the IPNS Rietveld package over the d range of 0.5-4.0 A with the 

resolution of Ad/d = 0.006. The overall scale factor, parameters defining peak shapes, 

counter-zero error, atomic position parameters, isotropic thermal (atomic displacement) 
factors, and unit-cell parameters were refined. The PDF was calculated using the data of 

S(Q) up to 35 ~ - l ,  with small damping for S(Q) - 1 between 30 and 35 ~-1.  

The Rietveld analysis suggested that the symmetry of PZ at T = 20 K is not the 

non-centrosymmetric Pba2, but the centrosymmetric Pbam. The PDF calculated from 
the Rietveld-refined model showed excellent agreement with the PDF data as shown in 

Figure 6.5. Real-space refinement over the range of 1.8-< r-< 9.5 ,~ produced an 

almost identical result. Thus the Rietveld method and the PDF method are in full 

agreement with the structure of PZ at 20 K. Note that in the PDF analysis just 28 
parameters were refined including position and thermal parameters and the S(Q) 
normalization factor, while in the crystallographic refinement 27 structural parameters 

were refined in Pbam symmetry in addition to 9 parameters which include the scale 

factor, background parameters as well as extinction and absorption parameters. The 

maximum allowed number of independent parameters in this real space range is 80 

(Billinge, 1992), more than twice as many as were refined. The best-fit model in the 

real-space refinement gave an A-factor of 7.87% with e .s .d . (A)=0.12% over the 

range 1.8-< r-< 9.5 A. Over this range, Amin was 2.15% and, therefore, the goodness 

of fit (GoF) value is 3.66. This value is comparable to the GoF value of 3.20 attained 

in the Rietveld refinement of the same data. The only significant difference between 

the Rietveld refined model and the real-space refined model was found in the value of 

the thermal (DW) factor of the equatorial oxygen 02. The Rietveld-refined thermal 

factor ( B -  0.42/~2) corresponds to an unreasonably high mean-square displacement, 
(u2), of 5 x 10 -3 ,~2, while the RDF-refined value is 1.5 x 10 -3 ,~2. The value of (u 2) 

calculated by the Einstein model is 2.07 x 10 -3/~2 for O, much closer to the value 

obtained by the PDF analysis. 

In order to compare the refined variables in the Rietveld and PDF analyses it is 

important to estimate their accuracy. This is possible by considering the uncertainties in 

the A and Rw- factors and their best-fit curves as functions of a refined parameter. Then the 

uncertainty in the refined parameter is given by the range of values for this parameter for 

which the A or Rw factors change by less than their e.s.d. The e.s.d, for the A-factor 

calculated by the propagation of e.s.d, of the data is + 0.12%, which when calculated in 

this way results in uncertainties in O2(c), O3(c) and O4(c) parameters in the PDF analysis 

of _+ 0.01, _+ 0.02 and + 0.02 ,~. Similarly, the e.s.d, of the Rw-factor is + 0.08% and the 

uncertainties for O2(c), O3(c) and O4(c) were found to be +_ 0.07, _+ 0.02 and _+ 0.04 ,~, 
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respectively, in the Rietveld analysis. Thus the uncertainties in these position parameters in 

the PDF analysis are significantly smaller than those in the Rietveld analysis. 

Consequently, the atomic positions refined by the PDF analysis are most likely to be 

more accurate. 

8.2.2 High temperature phases 
8.2.2.1 Temperature dependence. The crystal structure determined by the Rietveld 

analysis evolved smoothly and slowly with temperature. On the contrary, the PDF shows 

appreciable temperature dependence as shown in Figure 8.7. In particular, the changes 

in the peak heights with temperature are not uniform across r, some peaks becoming 

much more smeared at 300 K than at 20 K. An increase in the thermal vibrational 

amplitude can account for only a small part of this change. For instance, the dramatic 

decrease in the height of the PDF peak at 5.9 ,~ cannot be explained by thermal phonons. 

This implies the existence of displacive disorder developing with temperature. It was 

found that disordered oxygen displacements at the equatorial sites lead to an improved 

fit. Introducing disorder in the pattern of alternative 03 ,  0 4  displacements improved the 

fit, lowering the A-factor nearly 1%. 

8.2.2.2 Anharmonic displacements. The Rietveld-refined value for the thermal (DW) 

factor on the Pb site was anomalously large even at T - -  20 K. The reason is probably 
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Figure 8.7. Variation of the neutron PDF of PbZrO3 with temperature (Teslic and Egami, 1998). 
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the presence of some disordered static or quasistatic displacive disorder on the Pb site 

along the c-axis leading to a large uncertainty in the atom position. In order to characterize 

such Pb displacements the weighted Rietveld reliability factor Rw was evaluated as a 

function of the Pb displacement. To allow for such displacements the refinement was 

carried out in the non-centrosymmetric Pba2 space-group keeping the oxygen positions 

unchanged. The best-fit Rw-factor as a function of a static displacement of Pb in the 

c-direction, FE Pbc, is shown in Figure 8.8. 

A similar analysis with the PDF real-space method yielded a set of curves for the 

A-factor that shows minima more clearly than the Rietveld derived results. Thus, we 

can conclude that a small static or quasistatic local FE Pb displacement in the 

c-direction develops. Using the PDF analysis we can also detect the existence of 

correlation among Pbc displacements and its range. Keeping fixed the magnitude of the 

Pbc displacement that produced the best-fit model in the range 1.8-9.5 ,~, the PDFs 

with FE and random Pbc displacements for interatomic distances up to 40/k were 

compared. It was found that the FE correlation length at low temperatures was 

estimated to be about 10 ,~. For this reason we conjecture that the Pbc displacements 

must be quasistatic rather than static. 
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At 473 K both the reciprocal- and real-space refinements indicated a FE displacement 

of Pb in the c-direction. The best-fit curve for the Rw-factor shows shallow minima 
at + 0.08 ,~. In the PDF refinement, the A-factor curve has somewhat deeper minima 

at _+ 0.14 A before finally diverging at a larger value of A -- 0.20 A, as shown in Figure 8.9. 

It was found that the Pbc correlation length to be about 20/k at this temperature. 

8.2.2.3 Intermediate phase. The Rietveld analysis for the intermediate phase turned out 

to be extremely difficult, yielding large Rw factors and thermal factors. The structure 

apparently is not correctly described by either the Pbam or Pba2 symmetry phases. The 
PDF analysis also encountered great difficulties. However, a different, simpler AFE pattern 

with alternating Pb displacements within the ab plane (AFE-II, Figure 8.10(b)), as opposed 

to the double row AFE pattern at low temperatures (AFE-I, Figure 8.10(a)), was found to 
provide good agreement. This phase also has a large FE Pb displacement in the c-direction, 

and the correlation extends up to 30/k, while it is inconclusive whether the FE long range 

order is established. 

8.2.2.4 Paraelectric phase. Although PZ at high temperatures (above 508 K) was 
crystallographically refined as cubic, very small differences were observed in the PDF 

between 508 and 523 K (Teslic and Egami, 1998). This implies that the PE phase is locally 
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polarized, and that the FE phase transition has the order/disorder character (Stem and 

Yacoby, 1996). This point, however, requires further discussion developed in Chapter 11. 

The PDF refinement of the data at 523 K showed that Pb atoms were displaced along the 

[ 111 ] direction. The displacements are spatially correlated only over short range, therefore, 
they are not directly observable in the reciprocal-space analysis. 

8.2.3 Pb polarization 

As we discussed above, Pb 2+ has two 6s electrons that are high in energy, and readily 

hybridize with the oxygen p-orbitals, forming covalent bonds with 2 - 4  oxygen ions. 

Consequently the PbOl2 dodecahedral cluster becomes strongly off-centered as shown in 

Figure 8.11. The center of gravity of the O12 cage is separated from the position of the Pb 

ion by as much as 0.5 .A.. This produces a strong local ionic polarization of the PbO12 
cluster. The structure and structural transition in PZ can be understood in terms of 

interaction among these local PbOl2 polarizations and their reorientation as we will discuss 
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Figure 8.11. Oxygen neighbors of Pb in PbZrO3 in the ferrelectric phase. Numbers indicate distances in ,~ 
(Teslic and Egami, 1998). 

in Chapter 10. In PT Pb 2+ is displaced in the [100] direction, forming covalent bonds with 

four oxygen ions. In PZ the direction of the Pb 2+ displacement is [ 110], in the coordinates 

of the pseudo-cubic perovskite lattice, again with four close oxygen ions. In the average 

structure of rhombohedral PZT Pb 2+ is displaced in the [ 111] direction, but locally the 

direction is closer to [ 110] as discussed later. Thus Pb 2+ apparently prefers to be off-center 

either in [100] or [110] directions, but not in the [111] direction. This could be due to 

the partial involvement of the p-orbital in the covalent bond. This is very similar to the 

behavior seen in the covalent alloy Ina-xGaxAs (Sections 1.2.1 and 9.2.1) 
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Chapter 9 
Defects, Nanocrystalline and Crystallographically 
Challenged Materials 

9.1. LATTICE DEFECTS AND THE PDF METHOD 

Since the principal power of the PDF method resides in its capacity to describe deviations 

from perfect periodicity, it is a good method to consider in studying the nature and density 

of the lattice defects in crystals. In many materials of scientific and technological interest it 

is actually the defects that give them their interesting properties. It is thus very important to 

be able to study the defects as well as the average structure. A variety of techniques exist 

for characterizing defects including electron microscopy, scanning microscopies and 

spectroscopies, nuclear spectroscopic methods such as IxSR and NMR, and so on. Each 

method has advantages and disadvantages and it is important to choose the method 

commensurate with the purpose of the study. The PDF is a volume averaged quantity, so 

that in order for the lattice defects to become detectable in the PDF their density has to be 

sizable. For instance there is little chance of detecting thermal vacancies or lattice 

dislocations in metals by the PDF method since their densities are usually far smaller than 

10 -4. However, when the defect densities are sizeable the PDF yields quantitative atomic 

scale information about them. Materials where defect densities are large we refer to here as 

crystallographically challenged materials. This signifies that they are, indeed, periodic 

crystals; however, a significant aperiodic component exists that may be important in 
determining their properties. 

The minimum detectable density of defects varies case by case. The best way to detect 

them in the PDF is by comparing two samples with and without defects. The difference can 

be characterized by computing the agreement-factor (Chapter 6) between the two PDFs. 

Experience tells us that if the density of defects is 10% they are easy to detect, while if the 

density is below 1% it is difficult to become convinced from the PDF that the defects 

really exist. Why do we bother thinking about the PDF method when there are many 

other methods to detect defects? In fact, if the nature of the defects is well understood and 

the only issue is determining their density, the PDF method is not the method of choice. 

However, if the detailed nature of the defect, such as the local structure within the defect 

and the lattice relaxation around the defect, is not well known, the PDF method can be an 

excellent tool. Also when the density of defects is very high they start to interact with 

each other and their structure will become modified compared to the isolated state. 

The PDF method can determine such subtle changes in the local structure with high 
accuracy. 

295 
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Another class of materials we identify is that of nanocrystalline materials, defined in 
more detail below. These materials have limited structural coherence and are not really 
long-range crystals at all. As such they do not diffract with delta-function Bragg-peaks 
making them difficult to analyze crystallographically, yet the structural order is extensive 
enough (typically a number of nanometers) to make them distinct from traditional 
amorphous materials where the short-range order is very short-range. The PDF method has 
proved useful in solving the structure of a number of these materials as we describe below. 

9.2. DEFECTS IN WELL-ORDERED CRYSTALS 

9.2.1 Semiconductor alloys: the development of high-resolution X-ray PDF 

measurements 
The semiconductor alloys, In1-xGaxAs, were introduced in Chapter 1. Interest here was to 
study the local atomic displacements, beyond the average structure, due to the alloying. 
High real-space resolution was needed to resolve the short and long Ga-As and In-As 
bonds, respectively. However, the Q-range, and therefore real-space resolution, was 
limited in neutron measurements due to the presence of a neutron absorption resonance in 
indium. The solution lay in X-ray PDF measurements. The success of these high real- 
space-resolution X-ray PDF measurements has opened a new chapter in PDF analysis of 

crystals. 
Increasing the real-space resolution of X-ray measurements, as opposed to spallation 

neutron measurements, presents a special challenge: the X-ray form-factor, f(Q). The 
square of this is a measure of the structural-information containing coherent scattering 
from the material under study. The structure factor falls off sharply with increasing Q 
resulting in a weak signal at high momentum transfer (Chapter 5). This is illustrated in 
Figure 9.1(a) that shows the raw intensity from nanocrystalline WS2 (described below). 
The overall drop-off in intensity follows If(O)l 2 with very little apparent structure in the 
scattering in the high-Q region above 15 A. However, when the data are divided by If(Q)l 2, 
as per Eq. 2.9, diffuse structure becomes apparent in this region (Figure 9.1(b)). It is 
therefore important to measure to these high-Q values with good statistics. This does not 
present a problem when new high-flux, high-energy, synchrotrons are used such as Cornell 
High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) at 
Argonne National Laboratory. The incident flux at high energies is so great that, despite 
the inefficient coherent scattering, sufficient statistics can be obtained to yield accurate 
data up to 45 A-1 (Petkov et al., 1999a; Jeong et al., 2001). 

The high quality data from the In l_xGaxAs series, measured at CHESS at 10 K, are 
shown in Figure 9.2(a) with the high-Q region magnified. Noise is apparent, but the signal, 
a sine-wave feature with a period --~ 0.2 A, is clearly evident especially in the alloys where 
Bragg-peaks at high-Q are suppressed by the alloy-induced structural disorder. When these 
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Figure 9.1. (a) Raw intensity data from a sample of exfoliated-restacked WS2 measured using X-rays of 
h -- 0.202 ,~ (E --~ 60 keV) from CHESS. This Figure illustrates the effect of the atomic form-factor in 

suppressing intensity at high-Q. (b) The same data after making corrections and dividing by If(Q)l 2 showing 
significant diffuse intensity in the high-Q region (Petkov et al., 2000c). 
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Figure 9.2. (a) The reduced total scattering structure functions [S(Q)-  1]Q for InxGal-xAs measured 
at 10 K. The data-sets from the different members of the alloy series are offset for clarity. The high-Q region 
is shown on an expanded scale ( • 3) to highlight the presence of the diffuse scattering. (b) The PDFs, G(r), 

obtained from the data in (a) by Fourier transformation. Note the nearest neighbor peak is split into two 
components in the alloys (Petkov et al., 1999; Jeong et al., 2001). 
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low spatial resolution differential PDFs obtained using anomalous diffraction methods (see 

below, Petkov et al., 2000a), resulted in a fairly complete understanding of the local 

structure of these technologically important alloys and confirmed, but significantly 

extended, the information available from earlier XAFS studies (Mikkelson and Boyce, 

1982). Equally high real-space resolution is also available in the best neutron 

measurements as evidenced by a study on the closely related ZnSe]_xTex semiconductor 

alloy material (Peterson et al., 2001). 

These technique developments, motivated by the desire to study crystals, have now been 

fed back into the traditional study of glasses. Of interest here was the ability to study 

covalently bonded network glasses such as silicates and alumino-silicates. In this case the 

structural coherence is limited to less than 10 ,~ due to the random orientations of connected 

tetrahedra and peaks in the PDF beyond first and second neighbors are broad (Figure 9.3(b)). 

However, PDF peaks below 2 A originating from the SiO4 tetrahedra themselves are 

extremely sharp because of the well-defined covalent bonding as is evident in Figure 9.3(b). 

The ability to resolve the short and long bonds in the semiconductor alloys that differed 
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(bottom curve) with very sharp PDF peaks (Petkov et al., 2000b). 
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by only 0.14 A motivated a study of alumino-silicate glasses (Petkov et al., 2000b). These 

materials consist of continuous covalently bonded random networks of comer shared 

tetrahedra; however, some of the tetrahedra contain silicon and others aluminum. Despite 

their importance these materials present special challenges in their structural characteri- 

zation. In general, the A1 and Si ions are arrayed randomly. They are close in the periodic 

table making it hard to differentiate them by scattering power in an X-ray experiment, and by 

quirk of fate, they have very similar neutron scattering lengths too. They are low atomic 

number materials making XAFS measurements difficult, and NMR signals get broad when 

the A1 and Si coexist. However, when they form their tetrahedra with oxygen the S i - O  bond 

is shorter than the A1 - O bond by around 0.14 ,~. In a high real-space resolution PDF 

measurement it was possible to spatially resolve the S i - O  and A1-O peaks and watch how 

the peak intensities, widths and positions shifted with changes in the composition (Petkov 

et al., 2000b). The Q-space structure functions and the PDFs are shown in Figure 9.3. 

In Figure 9.4 g(r) functions are shown on an expanded r-scale with fits to the S i -O  and A1-O 

sub-components of the peaks. The data were collected at ID-1 of the Advanced Photon 

Source. This is a particularly nice example where chemical specific analysis is a special 
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Figure 9.4. PDFs, g(r), shown in Figure 9.3, now on an expanded scale, with fits shown to the Si-O and A1-O 
sub-components of the peaks (Petkov et al., 2000b). 
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challenge because of randomly arranged low-Z (and chemically similar) constituents, but 

where the chemistry of the different species could be studied independently by spatially 
resolving them due to the high real-space resolution attained. 

9.2.2 Defects in catalytic support oxide, Ce02 

Fine particle ceria, CeO2, is an important material for the automotive industry. Automotive 
engine exhaust contains various toxic gases such as CO and NOx that have to be cleaned by 

catalytic converters. Thus, the converters have to perform conflicting tasks of reducing NOx 

while at the same time oxidizing CO and hydrocarbons. By a miracle of modem chemical 

engineering, small particles of precious metal catalysts such as Pd and Rh can produce 

simultaneous chemical reactions, such as, NOx--* (1/2)N2 + (x/2)O2, CO + (1/2)O2---* 

CO2, and CHx + 02 + (x/4)O2--* CO2 + (x/2)H20, on the surface of these particles. 
However, this is possible only within a narrow specific range of oxygen partial pressure, 

since 02 is necessary for oxidation while it makes reduction difficult. The prime role of ceria, 

CeO2, as a catalyst support, is to maintain the local oxygen pressure within this window by 

releasing or absorbing oxygen through the reaction, CeO2 ~ CeO2-x + (x/2)O2. 
One of the major problems with ceria as the catalyst support is an irreversible deterio- 

ration of its oxygen storage capacity (OSC) during operation of a catalytic converter. While 

the old idea was that the loss of surface area due to crystal growth causes this deterioration, 

it is now well established that the surface area is not the only important parameter. Various 

chemical studies suggest that there exist two kinds of oxygen ions, active and inactive. 

After long use, the active oxygen ions in the ceria are replaced by inactive ones, and ceria 

loses its capability to store oxygen. However, no microscopic information was available so 

far as to what differentiates these two kinds of oxygen ions. 

Neutron PDF analysis carried out using the SEPD of IPNS gave the answer to this 

question (Mamontov and Egami, 2000). The sample was a 99% pure fine powder of CeO2, 

with grain size of about 70 ,~. The data were analyzed both by the Rietveld method and the 
PDF method. The PDF of ceria powder shown in Figure 9.5 agrees with the model PDF 

calculated for the perfect ceria (fluorite) structure reasonably well, but there are significant 

systematic differences. After extensive Monte-Carlo modeling it was found that the PDF is 

best explained by introducing interstitial oxygen defects and a balancing amount of oxygen 
vacancies (Frenkel type defects) as shown in Figure 9.6. The agreement-factor was 

reduced from 14.7% (GoF value 2.22) to 9.05% (GoF value 1.37), by introducing 12% of 

Frenkel defects (Figure 9.7). This reduction represents a major improvement in fitting. 

This result was confirmed by Rietveld analysis of the same data as well, after introducing 
various constraints suggested by the PDF model. Without these constraints the Rietveld 

analysis did not converge with the interstitial model. Thus it is highly doubtful if it were 

possible to discover these defects by the Rietveld method alone. The concentration of the 

defects refined by the Rietveld method is comparable, about 8%. 
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Figure 9.5. PDF of nano-particle ceria, CeO2, determined by pulsed neutron scattering (thick line) compared 
with the PDF calculated for perfect ceria (thin line) and the difference between them (below) 

(Mamontov and Egami, 2000). 

The difference between the measured PDF and the model PDF for the perfect structure 

is plotted also in Figure 9.5. High-frequency oscillations in the difference PDF are most 

probably noise, mostly due to the termination error introduced in the Fourier- 

transformation (Section 3.5.2). The wavelength of the high-frequency noise is close to 

that of the termination error, 7.8/Qmax --~ 0.33 A for Qmax --~ 24 A-1.  Other errors quickly 

decrease with r as discussed before, and are less likely to affect the PDF beyond the range 

of 2 - 3  A. However, the difference PDF has in addition slowly varying components that are 

not readily caused by the error in S(Q), and therefore are likely to be true. Furthermore the 

differences in the PDF occur only at peaks involving oxygen, and C e - C e  peaks are well 

explained by the model PDF. These observations are consistent with the presence of 

oxygen defects. 

An inspection of Figure 9.5 might lead one to think that the observed PDF may be 

brought to better agreement with the calculated PDF by subtracting a constant from g(r); 

one may argue that something went wrong with the normalization of S(Q), so that g(r) - 1 
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O 

Figure 9.6. Interstitial oxygen defects in ceria. (Mamontov and Egami, 2000). 

is not correctly normalized. As reasonable as it may sound, this argument has a major 

flaw, which is interesting by itself. First of all, the normalization of g(r) - 1 affects tall 

peaks more than the g(r)= 0 line. Since the peaks are in agreement normalization can- 

not be much off. Secondly it is impossible that some error ends up in adding a constant to 

the PDF. As discussed in Section 3.1.3.2, G(r) is defined to become zero at large r, and the 

average density is supplied by hand. So if there is an error it has to come from the value of 

P0. If the value of P0 is reduced the heights of the PDF peaks also have to be reduced, again 

resulting in disagreement. 

In CeO2 crystal Ce ions form an fcc lattice, and O-ions occupy the tetrahedral interstitial 

site of the fcc structure (Figure 9.6). Remarkably the octahedral interstitial site is 

unoccupied in the crystal structure, even though it is more spacious than the tetrahedral site. 

Since the interstitial oxygens in these octahedral cavities are less strongly bound they are 

more likely to come out, and facilitate the oxygen storage capacity. Thus, the interstitial 

oxygen ions are most likely to be the 'active' oxygen ions for the oxygen storage capacity. 

A direct proof of the annealing effect was obtained by studying the effect of thermal 

treatment on the ceria sample (Mamontov et al., 2000). As shown in Figure 9.8 the density 

of the defects determined by the Rietveld analysis decreased rapidly above 600~ At this 

temperature also the oxygen storage capacity (OSC), determined by the temperature- 

programmed reduction (TPR) method, also appreciably decreased providing the direct 

connection between the structural defects and the ability of ceria as a catalyst support. 

While thermal treatment results in the coarsening of crystal grains as well, its temperature 
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Figure 9.7. PDF of nano-particle ceria, CeO2, determined by pulsed neutron scattering (solid line) compared with 
the PDF calculated for ceria with oxygen defects of Frenkel-type (Mamontov and Egami, 2000). 

dependence does not agree with the change in the defect density and OSC. Thus it is clear 

that the reduction in the surface area of powder and thermal diffusion are not the reason for 

the decrease in the density of defects. The PDFs before and after the heat treatment are 

compared in Figure 9.9. The PDF after the treatment is much closer to the model PDF for a 

perfect structure. 

When oxygen ions are reintroduced after reduction, they are likely to occupy the 

octahedral site first, before they move into the more stable tetrahedral site. Only when 

the sample is annealed at high temperature the defects will return to the proper site. This 

explains why long annealing can deactivate ceria. The nano powder sample used in this 

study was prepared by the low temperature (300~ calcination of cerium nitrate. Thus the 

sample was never exposed to high temperature that would deactivate ceria. 

The figure also shows the concentration of the defects in (Ceo.sZro.2)O2 as a function of 

temperature. It is clear that mixing zirconia greatly stabilizes the ceria defects. A possible 

mechanism of this effect is that alloying zirconia reduces the lattice constant, thus 

makes the tetrahedral site even tighter. This will destabilize oxygen in the tetrahedral site, 
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F igu re  9.8. The density of defects (vacancies and interstitials) as a function of annealing temperature 

(Mamontov et al., 2000). 

and make it more difficult for the interstitial oxygen in the octahedral site to return to the 
tetrahedral site. 

The interstitial defects, similar to those found in ceria, were observed for the first time in 

Ca(Y)F2+~ (Cheetham et al., 1971). They have been observed since then in a number of 

compounds with the fluorite structure. Usually such defects are found in doped systems 

where the interstitial anions are charged-compensated by cation excess charges. Thermally 

induced defects of similar type were also observed in pure tetravalent systems (Hutchings 

et al., 1984). In the latter case the interstitial anions are charge-compensated by vacancies 

in the regular anion sublattice. 

These results strongly indicate that the oxygen Frenkel type defects constitute the 

'active', weakly bound oxygen observed in the series of recent experiments, and define 

the oxygen storage capacity of ceria in automotive three-way catalytic converters. Thus 
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Figure 9.9. PDF of ceria before and after thermal treatment (Mamontov et al., 2000). 

the PDF study has identified a very important aspect of the catalyst support oxide. 

When the density of defects is high enough, greater than a few percent, then the PDF 

study can be used in identifying and quantifying these defects. 
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Figure 9.10. Diffraction pattern of ceria/zirconia system, in physical mixture, solid solution, and optimal mixture 
(Egami et al., 1997). 
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9.2.3 Nanosegregation in ceria-z irconia mixture 

As shown above, mixing zirconia with ceria stabilizes the lattice defects and extends the 

life of ceria as catalyst support. However, zirconia has additional effects of reinforcing 
the oxygen storage capacity of ceria. It has been known in the field of catalytic support 

that a true solid solution of ceria-zirconia is not necessarily the best, but some special 
processing was needed to produce the best performing ceria-zirconia mixture. The PDF 

study revealed that the best performing mixture has nano scale ceria-zirconia segrega- 

tion within the crystalline grain (Egami et al., 1997). While the crystalline size is of the 
order of 100 A the nano segregation of about 20 ,~ exists within the grain. As shown in 

Figures 9.10 and 9.11, while the diffraction pattern appears to resemble that of a solid 

solution, the real local structure is closer to the two phase physical mixture. This was later 
confirmed by the X-ray small angle scattering. It is conjectured that the nano segregation 
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Figure 9.11. Pulsed neutron PDF of ceria/zirconia system, in physical mixture, solid solution, and optimal 
mixture (Egami et al., 1997). 
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helps to create pathways for oxygen. It appears that engineering such nano scale structure 

is one of the keys of producing an effective catalyst support. 

9.3. NANOCRYSTALS AND CRYSTALLOGRAPHICALLY CHALLENGED 
MATERIALS 

9.3.1 Introduction 

Crystals have long-range order. Their structure can be defined by a small number of 

parameters that define the unit cell (its shape and size) and its contents (atomic coordinates 

and thermal factors). The complete structure is then obtained by periodically repeating this 

unit cell ad-infinitum. Towards the opposite end of the structural order-disorder spectrum 
are glasses and liquids that have only short-range order and no long-range order. The local 

environment of a particular atom type may be well ordered, but the correlations die out 

over the range of a few angstroms, as discussed above in relation to Figure 9.3(b). In this 

case, the complete structure is never completely 'solved', but is described statistically in 

terms of atomic distributions or atom-pair distributions. 
Increasingly, new materials are being discovered that lie between these two extremes. 

They have a well-defined structure over local and intermediate range that can be described 

rather well by a small unit cell and a small number of parameters. However, they are not 

long-range ordered and the structural coherence dies out on a nanometer length-scale. 

We call these materials 'nanocrystals'. In these materials the scattering pattern does not 

contain Bragg-peaks making it impossible to study using conventional crystallographic 

techniques. However, the PDF is a tractable and intuitive approach to solving the structures 

of these materials resulting in robust and quantitative structural solutions. 

Note that this definition of nanocrystals goes beyond perfect crystals that are simply 
very small (nanometer in size) such as passivated gold and semiconductor nanoclusters 

(Whetten et al., 1996; Alivisatos, 1996) and includes materials where the particle size can 

be larger but the structural coherence is nanometer length-scale. As we discuss below, this 
includes a large number of interesting materials. The important point is that the materials 

are ordered over a sufficiently long range to allow a concise description of the structure in 

terms of a small number of parameters, but are not ordered over sufficiently long range to 

allow a structural solution using conventional crystallographic techniques. Examples that 

have been studied using the PDF technique include MoS2 and related compounds (Petkov 

et al., 2000c, 2002a; Petkov and Billinge, 2002), VzO5-n(H20) xerogel (Petkov et al., 
2002b), pyrolitic carbon (Kane et al., 1996; Petkov et al., 1999b) and hydrous RuO2 
(Dmowski et al., 2002). 

Another class of interesting materials are those where long-range order exists but 
where significant structural distortions are also present that are not reflected in the 

average structure. These can be considered as defects to the average structure, for example, 

the cases of the semiconductor alloys and ceria described above. However, sometimes 



308 Underneath the Bragg Peaks 

the distortions are rather extensive, or it is the aperiodic component of the structure that is 

of particular interest, in which case it makes less sense to consider the disorder as a defect 

away from the ideal structure. This class of material is rather widespread if molecular 
systems are included, for example, plastic crystals that have periodically arranged but 

orientationally disordered molecules, would fall into this class. 

All of these materials, where deviations from perfect crystallinity are rather severe but a 

remnant of the crystallinity is apparent, we term 'crystallographically challenged 

materials' to distinguish them, on the one hand, from well-ordered crystals and, on the 
other, glasses. 

9.3.2 Carbon nanostructures 

Carbon nanostructures, in particular nanotubes (Bethune et al., 1993; Iijima and Ichihashi, 

1993) have been a very fertile source of new science in the past few years across several 

fields including, for example, electron transport and nanoscale electronics (Dresselhaus 

et al., 1996; Saito et al., 1998). Structures range from simple and intuitive, such as the C6o 

molecule, to complex and highly disordered. The complex disordered structures have 

nanoporous properties but details of the structure are hard to characterize. 

Even relatively simple solid C60 contains disorder since the C6o balls sit on high- 

symmetry special positions in the lattice. The point symmetry of the balls themselves is 

lower than the point symmetry of the crystallographic site they sit on. This means a-priori 

that the internal structure of the balls themselves cannot be solved from the Bragg- 

scattering alone. In fact, in solid C6o considerable diffuse scattering exists that can be 

straightforwardly analyzed to extract information about the ball-structure (Figure 9.12). 

At room-temperature the balls are spinning at a fairly high rate. To a good approximation 

the structure can be modeled as being made up of isotropic balls making a close-packed 
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Figure  9.12. Reduced structure function from C6o from neutron data collected at room-temperature. 

The Bragg-peaks from which the fcc structure of C6o solid was solved are evident at low-Q. The significant 

diffuse scattering comes from the internal structure of the C6o molecule itself. 
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f cc  lattice (Heiney et al., 1991; David et al., 1991) and below 260 K the balls freeze into a 
partially ordered arrangement where there is a tendency for the C-C  double bonds on one 
molecule to align with the centers of pentagonal faces on the neighboring ball (David et al., 

1991; Hu et al., 1992). 
As we described in Chapter 1, C60 provides an excellent example of the importance of 

studying total scattering (Bragg and diffuse scattering) when analyzing complex solids. 
The large amounts of diffuse scattering are evident in Figure 9.12. The resulting PDF is 
shown in Figure 9.13 with sharp correlations at low-r coming from the balls themselves and 
broad correlations at higher-r from the ball-ball correlations. The total scattering data can 
be studied in real-space (Li et al., 1991; Hu et al., 1992; Soper et al., 1992; Thorpe et al., 

2002) or directly in reciprocal-space (David et al., 1991; Copley et al., 1992; Leclercq et al., 

1993; Damay and Leclercq, 1994), but in either case both the Bragg and diffuse scattering 
must be analyzed. Both neutron and X-ray single crystal diffuse scattering has also been 
measured from C60 and summarized in Pintschovius (1998) and Neild and Keen (2001). 
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F i g u r e  9.13. PDF, G(r), from the data shown in Figure 9.12 (dots) with the calculated structure of C6o 
superimposed. Contrary to the case with the Q- space scattering, the sharp peaks at low-r come from the C - C  

correlations on the C6o balls themselves, the broad structure at higher-r comes from the fcc arrangement of 
isotropic hollow balls due to the fact the balls are spinning (Thorpe et al., 2002). 
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The study of disordered carbons has a structural scientific pedigree of the highest order, 

being studied first by Warren (1934) and later by Rosalind Franklin (1950, 1951) whose 

role in the discovery of the structure of DNA we referred to in Chapter 3. The work of 
Warren was on porous 'Carbon blacks' and an example of one of the first PDF analyses of 

powder data. The study revealed that the materials were made up principally of graphene 

sheet fragments. The tedious procedure of Fourier transforming data, ca. 1934, prompted 

Warren to come up with the alternative approach for analyzing data from disordered 2D 

structures such as these directly in Q-space. Scattering from 2D sheets gives rise to a 

characteristic asymmetric line-shapes for the Bragg-lines in powder patterns, with a sharp 

rise and a long tail on the high-angle side, the now called 'Warren line-shape' (Warren, 

1941). The data analysis in these early studies was hampered by lack of modem high-flux 

sources, linear, high-count-rate detectors and no computing. Nonetheless, the amount of 

information extracted from the scattering is extraordinary. For example, in the Franklin 

(1950) study of pyrolized polyvinelidene chloride, which forms a particularly disordered 

carbon, the structure was determined to be made up of fragments of graphene sheets of 
16(___ 1) ,~ stacked together with a layer spacing of 3.70 ,~ (compared to 3.35 A for pure 

graphite); that 65% of the carbon is in the form of graphene sheet fragments, of which 55% 
is stacked with two or more layers parallel; and that the particles approach each other to a 

separation of 25 ,~. A more complete study of a series of carbons with differing degrees of 

disorder resulted in a view of the structure of graphitizing and non-graphitizing carbons as 
shown in Figure 9.14. This picture has a remarkable similarity to that obtained in 1999 

Figure 9.14. Model for highly disordered nanoporous carbon ca. 1950 (Franklin, 1951). 
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using advanced computer modeling (Acharya et al., 1999), Figure 9.15, from the 

much wider Q-range neutron data shown in Figure 9.16(b) (Petkov et al., 1999b). 

The quality in the low-Q region of the 1950 and 1999 data-sets can be compared in 

Figures 9.16(a) and (b) (note that to convert the x-axis of the Franklin (1950) data to the 

same units as the Petkov et al. (1999b) data it should be multiplied by 2-rr). The main 

difference between the data sets clearly comes from the range of Q now accessible and 

this is evident as much higher real-space resolution in the modern PDF shown in 

Figure 9.17(c). Note that the original PDF of Franklin had terrible contamination from 

termination ripples (e.g. see the spurious ripple at r - -  1.9/k in Figure 9.17(a)) that 

were eliminated by damping the data, as discussed in Section 5.3.10 and resulting in the 

PDF in Figure 9.17(b). In the 1999 study the termination ripples in G(r) are minimal 

without any data damping (Figure 9.17(c)), illustrating the importance of measuring 

data over a wide range of Q. For example, compare the second and third C - C  peaks 

between 2 and 3 A in Figure 9.17(c). These are completely resolved in Figure 9.17(c), 

completely unresolved in Figure 9.17(b) and evident as a shoulder (but smaller than 

the termination ripple at 1.9 ,~,!) in Figure 9.17(a). The need to collect high-quality data 

over a wide Q-range cannot be overemphasized. 

We now understand that the graphene sheets can be significantly bent by introducing 

pentagons and this contributes to the loss of structural coherence as well as sheet fragmen- 

tation (Figure 9.15). In the more disordered carbons the sheets also can support defects 

that preserve the network such as higher-membered rings (seven and eight for example). 

, ,  

Figure 9.15. Model for highly disordered nanoporous carbon ca. 1999 (Acharya et al., 1999). 
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Figure 9.16. Top Panel, structure function from pyrolized polyvinelidene chloride measured in 1950 using 
laboratory X-rays by Rosalind Franklin (Franklin, 1950). Bottom panel, structure functions from 

pyrolized polyfurfuryl alcohol, with the pyrolization temperature shown, measured using spallation neutrons 
in 1999 (Petkov e t  a l . ,  1999b). Both show the same representation of the data ( Q [ S ( Q )  - 1]) but the scale 

on the upper panel should be multiplied by 2rr to compare it with the data on the bottom panel. The Q-range 
of the 1950 data is therefore 0 < Q < 15 ~,-~. 

This is apparent because with the higher resolution allowed by a much higher Qmax 

from modern sources the second and third neighbor carbon peaks can be resolved 

(Figure 9.17(c); Petkov et al., 1999b) where they could not in the Franklin (1950) data 

(Figure 9.17(b)). Intensity is lost out of the third peak in the more disordered carbons 

indicating the presence of higher-membered rings. Remarkably, in 2002, 52 years after the 

Franklin work and 68 years after Warren's pioneering work, we are still struggling to 

understand the structure of these disordered carbons, which, nonetheless, retain their 

technological and scientific interest (Petkov et al., 1999b; Claye and Fischer, 1999). 
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Figure 9.17. (a) PDF of nanoporous carbon from the data shown in Figure 9.16(a). (b) (solid line) PDF from 
the same data after damping the data to minimize termination ripples. Note the spurious ripple at r = 1.9 ~, 

in (a) has disappeared after damping the data (b), but the PDF has become significantly broadened. 
The dashed line shows the PDF calculated for graphite (Franklin, 1951). (c) PDF from the modern 

spallation neutron data shown in Figure 9.16(b). This PDF was obtained by direct transform (as were 
the PDFs in panels (a) and (b)) but without damping. The PDF peaks are sharp, the data high 

resolution, but the spurious termination ripples are minimal. The amplitude of the data falls off 
quickly with increasing r because of the nano-scale crystallites (Kane et al., 1996). 

9.3.3 Crystalline and nanocrystalline phases of silica 
Silica, SiO2, is a simple binary compound that, nevertheless, exists in many forms from simple 
cubic crystalline quartz, through complex nanoporous zeolites, to fully amorphous (e.g. see 
Section 9.2.1). It is made up ofnetworks of corner-shared SiO4 tetrahedra. The closely related 
and technologically useful alumino-silicates have some silicon replaced by A1, also in 
tetrahedral coordination, with a counter-ion providing charge-balance. The PDF has been 
used to study the high temperature crystalline phases of silica (Tucker et al., 2000, 2001a, 
2001 b, 2002). Neutron powder diffraction data were collected at 14 temperatures from 20 K to 
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1073 K from crystalline quartz, traversing the o:-[3 structural phase transition. At this phase 

transition the S i - O  bond shortens, despite the unit cell uniformly expanding on heating as 

expected. In the [3 phase an anomalous 180 ~ S i - O -  Si bond is also observed. This is evident in 

Figure 9.18, which shows the measured unit-cell expansion, and the shortening of the average 

S i - O  bond length as the transition is approached from below. What is actually happening is 

that the oxygen atoms midway between neighboring silicons begin precessing around the line 

separating the Si neighbors, as shown in Figure 1.11. The actual, local, S i - O  bond smoothly 

increases in length over the entire temperature range, as directly measured from the position of 

the first peak in the neutron PDFs (Figure 9.19). Detailed RMC refinements of the structure 

have been carried out. The resulting RMC models show instantaneous snapshots of the 

structure of the tetrahedral network in the two phases (Figure 9.20). When the local 

configurations are averaged into a single unit cell, the crystallographic results are recovered 

(Tucker et al., 2000, 2001 a). The RMC refined models can be analyzed to obtain information 

such as the bond-angle distribution functions, as shown in Figure 9.21. From this it is evident 
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Figure 9.18. Temperature dependence of the (a) unit cell volume, (b) S i -O distance, in quartz. The vertical 
dashed line shows the phase transition from ot to [3. In (a) data from the Rietveld refinement and 

the 17 A peak in the P D F s  are given by squares and open circles, respectively. In (b) squares and filled 
circles represent the average S i - O  separation given by Rietveld refinement and the RMC, respectively. 

The open circles represent the local S i - O  bond length obtained from the PDF (Tucker et al., 2000).  
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Figure 9.19. Neutron RDF's of quartz over a wide range of temperatures. The dashed lines through the two 
lowest-r peaks follow the temperature evolution of the Si-O and O-O bond distances, and the full line 

through the peak at around 17 ~, follows an interatomic distance that scales with the average linear thermal 
expansion. The OL--13 phase transition occurs between the 863 K and 973 K data sets (Tucker et al., 2000). 

that a discontinuous change in the S i -  S i -  Si bond angle distributions occurs at the a -  [3 phase 

transition. On the other hand, the local structure evolves continuously through the transition 

(Figure 9.19), reflecting the fact that the network is remaining continuous but the increased 

thermal energy at high temperature is allowing the oxygen atoms to freely precess. 

The results on the quartz were a dramatic confirmation of a rather expected result. 

In the case of the oL-f3 phase transition in cristobalite, another form of crystalline silica, a 

similar analysis using PDF analysis resulted in new insight into this phase transition 

(Tucker et al., 2001b). A plausible model for the ~-phase involved it being a microscopic 

superposition of rotated domains of oL-phase. This was not borne out by the analysis that 

indicates that 13-cristobalite is a distinct phase with very distinct local S i - S i - S i  bond 

angle distributions from those of the oL-phase. It was also shown that in this phase again the 

oxygen bridging two silicons is precessing about the S i - S i  vector and is not, as is often 

approximated in crystalline studies, a six-fold multi-welled solution with the oxygens dis- 

ordering between the six possible sites coming from different oL-phase variants. One nice 

advantage of RMC modeling and refinements is that the resulting configurations can be 
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Figure 9.20. Results of RMC refinements. (100) layers of atomic configurations of quartz are shown represented 
by SiO4 tetrahedra above and below To. The inserts show the 'average' structures obtained by averaging into a 

single crystallographic unit cell. In this projection the small parallelepiped gaps between tetrahedra become 
orthogonal in the [3-phase, giving a clear representation of the symmetry change at Tc (Tucker et al., 2000). 

used to calculate diffuse scattering signatures. This was done in this case and the results 

compared qualitatively with diffuse scattering from TEM measurements with good results, 

lending confidence to the RMC-derived solution (Figure 9.22). 

As we described above in the section on high-resolution X-ray PDF measurements, 

amorphous silica and aluminosilicates have also been measured with some success using 

PDF methods. These silica data were recently compared with silica that forms the walls 

of disordered nanostructured silica (Pauly et al., 2002). The challenges of measuring 

the low-density surfactant templated nanoporous silica are significant (most of what is in 

the beam is empty space!) but it is clearly apparent from these measurements that the 

average S i - O  bond-length in the thin inter-pore walls is longer than in bulk silica. 

9.3.4 Crystalline and nanocrystalline MoS2 and its derivatives 

As an example of nanocrystals we consider first the MoS2 system. Pristine MoS2 is the 

key catalyst for the removal of sulfur from crude oil (hydrodesulfurization) (Kanatzidis 
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Figure 9.21. The upper plot shows the nearest-neighbor S i - S i - S i  angle distribution in quartz. The lower two 
plots show the temperature-dependence of the positions and widths of the two peaks that coalesce in the 

[3-phase. Note the qualitative change in the S i - S i - S i  bond angle distribution around 130 ~ at 
the transition (Tucker et al., 2000). 

et al., 1993). The material is perfectly crystalline and consists of covalently bonded 

layers of Mo-S6 trigonal prisms held together by Van der Waals forces. LiMoS2 has Li 
intercalated between the M o S 2  layers. It is important as a precursor in the preparation of a 
variety of lamellar nanocomposites (Divigalpitiya et al., 1989). Despite being extensively 
studied for the last 19 years the structure of LiMoS2 has not been determined. The reason is 

that, on Li intercalation, pristine M o S 2  is dramatically modified resulting in a product 
that is too poorly diffracting to allow a structural solution. This leaves unanswered the 
important question of what exactly happens when M o S 2  gets reduced with lithium. 

X-ray powder diffraction data from the MoS2 and LiMoSe samples were measured at 
beamline X7A at NSLS. The reduced structure functions are shown in Figure 9.23 and 
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Figure 9.22. Maps of the three-dimensional diffuse scattering from cristobalite, showing the a-b plane in 
reciprocal space. The single-pixel white spots are the Bragg peaks. The plot in the bottom-right comer shows 

experimental TEM measurements for 13-cristobalite from Hua et al. (1988); (Tucker et al., 2001b). 

the resulting PDFs in Figure 9.24. Sharp Bragg peaks are present in the S(Q) of MoS2 up 

to the maximal Q value of 24 A-1 (Figure 9.23(b), the inset shows the data on an expanded 

scale). The corresponding G(r) also features sharp peaks reflecting the presence of well- 

defined coordination spheres in this 'perfectly' crystalline material (Figure 9.24(b)). The 

inset to Figure 9.24(b) shows G(r) calculated to 5 nm. Clearly, the amplitude of the 

structural features (the PDF peak: peak amplitude) remains unattenuated over this range 

as is expected for a long-range ordered material. This is a result of the sharp Bragg-peaks in 

S(Q) evident in Figure 9.23. The known crystal structure also fit well to the PDF (solid line 
in the Figure). 

The data from the nanocrystallographic LiMoS2 sample serve to illustrate the problem 

of structure solution from this class of materials. Plenty of structure is evident in the 

scattering (Figure 9.23(a)) but the peaks are broad and quickly become strongly 

overlapped. This is especially evident in the inset that can be compared with the data from 

crystalline MoS2 in the inset to Figure 9.23(b). Conventional crystallographic methods lose 
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Figure 9.23. Experimental structure functions of (a) LiMoS2 and (b) MoS2. Note the different intensity scale 
between (a) and (b). The data are shown in an expanded scale in the insets. Peaks in the 

nanocrystalline LiMoS2 data are much broader (Petkov et al., 2002a). 

their power with data like this, which explains why a full three-dimensional solution of the 
structure eluded scientists for so long. The Fourier transformed data (Figure 9.24(a)) 
contain peaks of comparable sharpness to those from the crystalline material (the com- 

parison is even more dramatic in the case of WS2 described below and shown in Figure 3.3) 
indicating that the local structure is well defined. On the other hand, features in G(r) die out 

with increasing r as shown in the inset to Figure 9.24(a), which can be compared to the 
inset to Figure 9.24(b) from the crystalline material. Oscillations in G(r) have virtually 
disappeared by 50 A. The range of the structural coherence is therefore limited which 

results in the broad peaks in the diffraction pattern. 
The relatively sharp features in G(r) allow structural models to be compared to the data 

and differentiated. A number of structural models were fit to the LiMoS2 data; the best fit of 

the most successful is also shown as a solid line in Figure 9.24(a). Competing models 
produced qualitatively poorer fits (Petkov et al., 2002a). The best-fit structural model 

showed the following. The Mo-S2 layers in LiMoS2 are built of distorted Mo-S6 
octahedra. Mo atoms from a single Mo-S2 layer arranged in a regular hexagonal lattice 

(see Figure 9.25) and are all separated by the same distance of 3.16 A as in pristine MoS2. 
Molybdenum atoms occupy two distinct positions in the triclinic unit cell of LiMoS2 
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structural models (Petkov et al., 2002a). 

(Petkov et al., 2002a) giving rise to short (2.9-3.10 A) and long (3.44-4.07 ,~) Mo-Mo 
distances. As a result, triangulated diamond chains of short M o - M o  distances are evident, 
as shown in Figure 9.25. 

The observed distorted structure of Li MoS2 has an intuitive explanation using simple 

electron counting arguments. In MoS2 the molybdenum is in the 4 + state and has 2 d- 
electrons. It is stable in a prismatic crystal field resulting in a 1-3-1 arrangement of atomic 
d energy levels. The two electrons both occupy the lowest energy level and are therefore 
paired. The Mo therefore has non-bonding interactions with its neighboring Mo ions 

resulting in six equal M o - M o  distances. When Mo gets reduced by the addition of Li it has 

3 d-electrons. The prismatic coordination is destabilized with respect to octahedral 
coordination that results in triply degenerate t2g and doubly degenerate eg states. One 
electron goes into each of the three t2g states that point towards neighboring Mo ions. Each 

Mo can then form metal-metal bonding interactions with three of its neighboring Mo ions 
resulting in three shorter (and three longer) M o - M o  bonds and the diamond like pattern of 
distortions shown in Figure 9.25(b). 

This also explains the zigzag distortion pattern observed in exfoliated-restacked WS2 

(Petkov et al., 2000c). This material is isostructural and chemically very similar to MoS2. 
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Figure 9.25. Projection down the c-axis of the crystal structures of hexagonal MoS2 (upper) and triclinic LiMoS2 
(lower). The large black circles are Mo atoms and the small gray circles are the S atoms. Li atoms are not 

shown for the sake of clarity. In the LiMoS2 structure the 6 s-neighbor Mo-Mo separations split 
into 3-long and 3-short (Petkov et al., 2002a). 

Lithium can be intercalated to produce LiWS2. The material can then be exfoliated in 

solution whereby the (Mo]W~)S2 layers separate and form a colloid. By changing the 

chemical conditions the layers can be restacked and the Li washed out. The resulting 

material is WS2, chemically identical to the starting material, but significantly modified 

structurally by the exfoliation-restacking process. The resulting structure is nanocrystalline 

and metastable, returning to the ground-state structure of pristine (Mo/W~)S2 over a period 

of hours in the case of MoS2 and weeks for WS2. The full 3D structure of nanocrystalline 

WS2 was solved for the first time by the PDF technique (Petkov et al., 2000c). The structure 

functions and PDFs of pristine and exfoliated-restacked WS2 are shown in Figures 9.26 

and 3.3, respectively. In Figure 3.3, the low-r peaks in the PDF of the nanocrystalline 

metastable phase are sharp and resolution limited testifying to the well-defined order. 

However,  the extent of the structural order is rather short-range, being already significantly 

attenuated by 20 ~, in this case. The W - W  peak at 3 * in the pristine material splits into 
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Figure 9.26. Reduced structure functions, measured at X7A of NSLS, of (a) hexagonal pristine W S  2 and 
(b) exfoliated-restacked WS2. Note the different Q-ranges for the data due to the data being 

measured on different instruments (Petkov et al., 2000c). 

four peaks (2.77, 2.85, 3.27 and 3.85 ,~, Petkov et al., 2000c) resulting in zigzag 

arrangements of short (--~ 2.8 ,~) and long (---3.5 ,~) bonds. 

In the case of exfoliated-restacked (Mo/W)S2 case the Mo/W is reduced by intercalating 

Li during the exfoliation process. It therefore transforms into the octahedral coordination 

of S around Mo similar to reduced LiMoS2. When the Li is removed during restacking the 

W gets kinetically trapped in its octahedral environment. However, now there are only two 

electrons instead of three in the t2g states. The W can only bond with two of its W 

neighbors instead of three and the distortion pattern is a one-dimensional zigzag instead of 

the triangulated diamonds of LiMoS2. 

To summarize, in both Li intercalated and the exfoliated-restacked structures the 

material forms well-defined 3D-ordered structures that can be described with a rather small 
unit cell. However, structural coherence of the order is limited to 5 nm or less, apparent as 

the fall-off in intensity in G(r) with increasing r (Figures 9.24(a) and 3.3(b)). In S(Q) this is 

apparent as a profound broadening of the 'Bragg-peak' intensity compared to those of the 

crystalline samples. Note, that despite the broad peaks in S(Q) for the nanocrystalline 

sample, sharp (resolution limited in the case of WS2) peaks are evident in G(r), confirming 

that the structure is locally very well defined though the coherence of the order falls off 

with increasing-r. This is canonical 'nanocrystalline' behavior. 
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9.3.5 CrystallographicaUy challenged oxides of molybdenum 
As well as the nanocrystalline sulphides of molybdenum described above, oxides of Mo 
with Mo in the reduced state also present interesting examples of crystallographically 
challenged materials that benefit from analysis using total scattering methods. Here we 
describe three examples from the work of Hibble and Hannon (Hibble and Hannon, 2002): 
LiMoO2 (Hibble et al., 1997a) Li2MoO3 (Hibble et al., 1997b; Hibble and Fawcett, 1995) 
and LaMo205 (Hibble et al., 1998, 1999). 

The case of LiMoO2 is directly analogous to the LiMoS2 described above, although 
in this case the material is not nanocrystalline: it diffracts with clear Bragg-peaks. 
The structure was solved using crystallographic methods and published (Aleandri and 
McCarley, 1988). It remained a 'solved structure' for almost 10 years before the PDF of 
the material was checked. This immediately showed that the published structure was 
wholly inadequate, as shown in Figure 9.27 (top panel). An alternative model was 
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Figure 9.27. Neutron PDF (in the form of the radial distribution function, R(r) (designated T(r) in the figure) 
of LiMoO2 (thick line) compared with two models: (top panel) published crystallographic model 

(Aleandri and McCarley, 1988) and model determined using both Rietveld refinement and PDF data 
as inputs (Hibble et al., 1997a). 
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proposed that fit both the PDF data and the powder diffraction profile (Hibble et al., 
1997a). Interestingly the original rhombohedral model of Aleandri and McCarley (1988) 
had Mo sitting in a high symmetry position with six second neighbor Mo atoms at equal 

distances of 2.865 ,~. The new model, which accounts also for the PDF data, has short and 

long M o - M o  bonds indicating the existence of metal-metal bonding as expected in 

analogy with the LiMoS2 example above. There are presumably more 'solved' structures 

in the literature that would benefit from this kind of analysis! 

Another similar example is that of LizMoO3 whose structure was solved first by James 
and Goodenough (1988) whose structural solution proved less than adequate when 

compared to PDF data. Again, short and long Mo-Mo bonds were missed in the original 

structural model that became immediately apparent when compared to the neutron PDF 

data (Hibble et al., 1997b). This is a particularly nice example where multiple techniques 
were used to get to the bottom of the problem, there being an XAFS study that indicated the 

presence of short and long M o - M o  bonds and the full structural solution then being made 

on neutron powder data that were fit using conventional Rietveld refinement and PDF 
methods. 

The last example is particularly interesting since the structural solution that took into 

account the PDF data also indicated what had gone wrong with the original structural 

solution. In the case of LaMo205 the single crystal structure was always known to be 
problematic since it yielded a solution containing atoms that approached each other too 

closely (Hibble et al., 1998, 1999). The single crystal structure, in space group P63/mmc, 
also gave poor agreement with the PDF. Two more physical structures were found that 

agreed rather well with the PDF. These were somewhat distorted from the single crystal 

structure and were described in lower symmetry sub-groups of the parent structure (P-3m 
and P63mc). Furthermore, the two models had very similar short-range order up to around 

10 A. This suggested that perhaps both variants are actually present in the material 

intergrown into each other. The material is therefore twinned on a nanometer lengthscale 

over which the crystallographic measurements (including powder diffraction in this case) 
averages resulting in a crystallographically correct, but physically meaningless, structural 

solution. Again, comparing models with PDF data was central in sorting out this 

complicated situation. The resulting solutions also resulted in interesting and somewhat 

unexpected (though reasonable) structural motifs of M o - O  clusters and an interestingly 

triangulated Mo-Mo bonded network (Hibble et al., 1998, 1999). 

9.3.6 V2Os'n(H20) xerogel 

Another important example of nanocrystalline materials is V2Os.n(H20) xerogel. This 
material has fascinated researchers in the decades since its discovery because of its exotic 

open nanoporous structure with many potential applications (Livage, 1991; Livage et al., 
2000). Despite decades of extensive experiments with VzO5.n H20 its 3D atomic structure 



Defects, Nanocrystalline and Crystallographically Challenged Materials 325 

has not been determined in detail. The reason is that the xerogel exists only as ribbon-like 
particles about 10 nm wide and 1 Ixm long. Being such a poorly crystalline solid the xerogel 
exhibits a diffraction pattern without any Bragg peaks making it impossible to determine 
the 3D atomic structure by traditional crystallographic techniques. Instead the diffraction 
pattern consists of a rather small number of quite sharp features, indicating intermediate 
range order, and a pronounced diffuse component, as we have discussed, characteristic of 
nanocrystalline materials. Again, the PDF method allowed straightforward testing and 
refinement of 3D structural models allowing a solution of the nanocrystal structure. 

The structure functions for crystalline V205 and the V2Os-n H20 xerogel are shown in 
Figure 9.28 and the resulting PDFs are shown in Figure 9.29 (Petkov et al., 2002b). 
The diffraction patterns are characteristic for crystals and nanocrystals, respectively, with 
extensive Bragg peaks in the case of V205 and well-defined but relatively broad features in 
the xerogel. Features are also evident at low-Q in the xerogel coming from the appearance 
of nanoporous channels in the structure. Again characteristics are the PDFs. The crystalline 
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Figure 9.28. Reduced structure functions, Q[S(Q)- 1], of (a) v205-n H20 xerogel and (b) crystalline V205, 
collected at beamline X7A, NSLS (Petkov et al., 2002b). 



326 Underneath the Bragg Peaks 

,2 t a, 
0 9  O. 

0.6 0 10 20r~,~3(~)40 50 

A ~o.o  
(.9 
u.. -0.3- a 

-0.6 

~ 1 . 2  

~ 0 . 9 -  

0.6- 0 10 20 313, 40 50 

0.3- 

0.0- 

-0.3- 

-0.6- / 

0 ' ~, ' ;, ' ~ ~ ' 1'0 1'2 1'4 ; 6  1'8 20 
r (A) 

Figure 9.29. Experimental (circles) and fitted (solid line) PDFs for (a) V2Os-n HzO xerogel and (b) crystalline 
V205. The residual difference is shown in the lower part. The experimental data are shown over longer range 

in the insets to emphasize the nanocrystalline nature of the xerogel (inset in (a)) (Petkov et al., 2002b). 

material has sharp, well-defined PDF-peaks that extend indefinitely in-r. The peaks in 

the nanocrystalline xerogel are also sharp, especially below 12 A (about which more later), 

but the peaks are gradually attenuated with increasing r as highlighted in the insets to 

Figure 9.29. 

Modeling the nanocrystalline G(r) revealed the following (Petkov et al., 2002b). 

In contrast to crystalline V205, which is an ordered assembly of single layers of VO5 units, 

the gel is a stack of bi-layers of similar VO5 units with water molecules residing between 

the bi-layers with the distance of closest approach between the bi-layers being 11.5 A. 

In addition to the regular VO5 a sixth oxygen atom occupies what would be the coordina- 

tion site opposite to that of the 'capping' oxygen but at a much longer distance of --~ 2.5 A. 

Sharp decreases in the structural coherence (the amplitude of features in the PDF) are 

apparent at around 11.5 and 23 A (e.g. see Figure 9.29(a)). Such a slight but persistent loss 

of structural coherence repeatedly occurring at distances close to the (bi-layer)-(bi-layer) 

separation suggests that bi-layers in V205.nH20 are not stacked in perfect registry 
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indicating the presence of inter-bilayer stacking disorder. Poorly stacked layers can be 

mimicked in the PDF by artificially enlarging the atomic thermal factors in the out-of- 

plane direction, an approach that proved quite successful in modeling the turbostratic 

disorder in pyrolitic graphite (Kane et al., 1996; Petkov et al., 1999b). The modified model 

yielded the PDF shown in Figure 9.29(a) as a solid line. The observation of turbostratic 

disorder in these xerogels is in contrast to the considerable layer-layer correlation 

occurring in 'restacked' WS2 and LiMoS2 discussed above. However, it is similar, and 
probably has a similar origin, to that observed in the pyrolitic graphite that we described 

above. In that case it is believed to be coming largely from curvature of the graphene 

sheets. In the case of these xerogels the relatively long, narrow ribbons are known from 

TEM measurements to be highly curved and tangled which is possible if the bilayers 

remain in contact but are allowed to slide incoherently over one another. 

9.3.7 Nanoclusters intercalated in host materials 

Nanoporous materials are important for their ability to store and sieve individual 

molecules (Brus, 1986). Their large surface area also makes them important as hosts for 

catalysts. For example, one of the most important catalysts in petroleum cracking is 

nanoporous zeolite. Nanoporous materials are also being sought for containing hydrogen 

and lithium for fuel cell and battery applications. There is also fundamental scientific 
interest in the behavior of materials under confinement, for example, how confinement 

modifies phase transitions such as melting or superfluid onset (Chan et al., 1988; Porto and 

Parpia, 1995; Sprague et al., 1995). The practice of making materials with atomic scale 

holes, and filling them with things, will be around for some time to come. Obviously, it is 

important to be able to study the material intercalated in the pores. Spectroscopy is very 

useful in this regard, including NMR and inelastic neutron scattering. However, a 

prerequisite in having a quantitative understanding of the behavior of materials is to know 

the structure. We would like to know the structure of materials intercalated into nanopores. 

The PDF can be very useful because periodicity of the structure is not a prerequisite and so 

the intercalates need not be long-range ordered, which in general they are not. By using a 

differential technique such as anomalous X-ray scattering (e.g. see Price and Saboungi, 

1998), neutron isotope-exchange, or simply subtracting the scattered intensity from an 

empty host sample (i.e. considering the host as a sample container and carrying out 

corrections as outlined in chapter 5!), it is possible to extract the local structure in the 

vicinity of an intercalated atom or molecule. Because of signal-to-noise problems, this 

process is relatively in its infancy. However, a number of studies show that the approach is 

feasible. The structure of Se and CsSe and RbSe clusters intercalated in zeolite Y was 

solved using anomalous X-ray diffraction (Armand et al., 1997). Also, the position and 

orientation of CHC13 in the supercages of NaY zeolite was determined by a hydrogen- 

deuterium isotope substitution experiment coupled with neutron PDF analysis (Eckert 
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et al., 2002). By subtracting the scattering from an empty zeolite host it was also possible 

to study Cs intercalated into the zeolite ITQ-4 (Petkov et al., 2002c). 

Based on spectroscopic measurements Cs intercalated into ITQ-4 was thought to be the 

first room-temperature stable electride material, but no direct structural evidence was 

available to support this (Dye, 1997). Electrides are interesting low-dimensional correlated 

electron materials. Ionic solids such as CsC1 have a lattice of Cs + ions with charge balance 

provided by C1- counter-ions. Alternatively, charged Cs + can also be stabilized in 

solution. In this case, it is stabilized by becoming solvated by polarizable molecules. 

Electrides are at the interface of these extremes. An ionic lattice forms of alkali cations 

such as Cs + in a polarizable porous solid host analogous to the case of ions in solution. The 

counter-ions providing charge balance in the electrides are simply the donated electrons. 

In electrides the donated-electron density has been shown to be confined within cavities 

and channels in the matrix (Dye, 1997; Allan et al., 1990; Singh et al., 1993; Kaplan et al., 

1994). It behaves like a low-density correlated electron gas where the dimensionality of the 

electron gas and its electronic and magnetic properties are determined by the topology of 

the cavities in the host matrix (Dye, 1997). X-ray PDF measurements showed that, indeed, 

the intercalated Cs was in the Cs + state verifying that this is indeed an electride material. 

Furthermore the Cs + ions arrange in zigzag chains in the pores of the zeolites host. The 

pores in the ITQ-4 are narrower than most zeolites (7 ,~) and have an undulating 1D 

topology as shown in Figure 9.30(a). The scattering from the zeolites with and without 

loading is shown in Figure 9.31(a) and (b) and the resulting PDFs in Figure 9.32(c). 

Figure 9.30. (left) representation of the pore topology in the zeolite ITQ-4 (right). Structural model of the Cs + 
ions intercalated in the pores of the zeolites host as determined using differential PDF methods 

(Petkov et al., 2002c). 
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Figure 9.32. Differential PDFs obtained by subtracting the scattering from the zeolite host (dots). Solid lines 
are calculated PDFs from models fit to both the differential and total PDFs. The models are the same except 

for taking into account the Cs loading. The only successful models involved Cs + indicating that the 
intercalated Cs is ionized in this material (Petkov et al., 2002c). 

Significant new peaks are evident in the PDFs of the Cs loaded zeolites around 4 * .  This is 

even more apparent in the Cs differential PDFs shown in Figure 9.31. Both the total and 

differential PDFs were fit with models to come up with the proposed structure of zigzag 

chains of Cs + ions in the pores (Petkov et al., 2002c). 

9.4. CHEMICAL SHORT-RANGE ORDER 

Most PDF studies on crystals to date have concentrated on extracting information about 

atomic disorder, in the form of atom displacements from their average positions, and 

indeed the PDF is most sensitive to this. However, information is contained in the PDF 

about chemical ordering. Chemical long-range order results in superlattice Bragg-peaks, 

for example, as extensively studied in chemical order-d isorder  transitions such as in 

Cu3Au (e.g. see Cowley, 1995). As with the case of disordered carbon, the list of people 

who have worked on order-d isorder  phenomena in alloys has a scattering 'hall of fame' 

ring to it, including Warren, Cowley, Shockley, Lipson, Guinier, Krivoglaz and Moss 
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(Warren, 1990; Krivoglaz, 1969, 1996; Cowley, 1995). Above the ordering transition 

short-range ordering of the chemical species persists and can be studied using diffuse 

scattering (Cowley, 1950; Moss, 1964). This is still today a topic of great interest in non- 

stoichiometric compounds such as doped semiconductors, semiconductor alloys and 

oxides such as high-Tc cuprates where chemical short-range order (CSRO) can 

significantly modify the properties. It is interesting to know whether this information 

can be extracted from the PDF and this has been investigated recently (Proffen, 2000; 

Proffen et al., 2002). In this study data were first simulated and the CSRO information was 

extracted successfully from the simulated data using a reverse Monte-Carlo approach 

(Proffen, 2000). 
This has also been successfully demonstrated in real data from the Cu3Au system 

(Proffen et al., 2002). In this case X-ray PDFs from fully ordered Cu3Au, and a disordered 

compound quenched from high temperature, were compared. There are significant 

differences between both the raw data (Figure 9.33) and the PDFs (Figure 9.34) between 
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Figure 9.33. X-ray powder diffraction data from ordered (top) and disordered (bottom) samples of Cu3Au. 
Superlattice peaks are clearly visible in the chemically ordered sample. Some diffuse scattering, presumably 

originating from CSRO is evident in the 'disordered' sample below 20-- l0 ~ (Proffen et al., 2002). 
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Figure  9.34. Experimental PDFs from disordered (circles) and ordered (solid line) Cu3mu. The difference is 
given below as solid line. The estimated experimental uncertainty is marked by horizontal broken lines 

(Proffen et al., 2002). 

the ordered and disordered compounds as expected. As is clear from Eq. 3.5, in the 

PDF chemical ordering is manifest as changes in the peak intensities since the peak 

intensities are weighted by the atomic scattering factors of the pairs involved. This is 

evident in Figure 9.34. Simple least-squares refinement using PDFFIT allowed the ordered 

and disordered compounds to be distinguished. However, a reverse Monte-Carlo 

refinement of the data from the disordered material indicated that some short-range 

order persisted. 

In the ordered sample the CSRO parameters gave values exactly as expected for an 

ordered sample and persisted out indefinitely in r, as they should because the order is long- 

ranged. In the case of the disordered sample the CSRO parameters were not zero, the 

values for a random alloy, but deviated from zero in the sense that suggested that the same 

ordering scheme as seen in the ordered sample was persisting locally in the disordered 

sample. The non-zero CSRO parameters died out with increasing r and became 

insignificant around the 6th nearest neighbor. In this case, the residual order is probably 

the result of an imperfect quench rather than short-range order persisting above the 

ordering transition (the samples were quenched from 1200 K and the ordering transition is 

at 667 K). Nonetheless, it indicates that short-range order information can be extracted 

from the PDF. One thing that is apparent is that the signal of the CSRO in the PDF is rather 

weak. This is illustrated in Figure 9.35 which shows the calculated PDF from the fully 

random model and that with the mild CSRO refined to the disordered model. The 

difference curve, which has been multiplied by 3 •  shows the difference that is rather 

small: obtaining high-quality data is especially important in these studies. 
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Figure 9.35. Calculated PDFs of the starting (solid line) and resulting structure (circles) of Cu3Au from the RMC 
refinement that allows for chemical short-range order to exist in the 'disordered' sample. The difference 
between both PDFs is enlarged by a factor of three and shown below the curves (Proffen et al., 2002). 
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Chapter 10 
Local Structure of Systems with Competing 
Interactions 

10.1. MIXED FERROELECTRIC OXIDES 

As we mentioned in Chapter 1, in many modern functional materials responses to external 

stimuli are maximized by the use of competing interactions, which result in complex local 

structures. These local structures are quite often directly related to the desirable properties, 
making it important to study and understand them. The competing interactions produce 

complex internal structures primarily through a local feedback effect, as we will see in this 

chapter. A secondary, but important, factor is the effect of disorder. The competing forces 

are quite often adjusted chemically, by alloying two or more constituent compounds. An 

example is the high-temperature superconductor La2-xSrxCuO4 that is hole-doped by 
randomly replacing La 3+ with Sr 2+. This alloying effect introduces atomic level chemical 

disorder. While this chemical disorder itself is usually unimportant, it triggers the 

competing forces to create complex local structures and pin local patterns so that the whole 
structure does not have the lattice periodicity. For this reason these alloy solids are rich in 

complexity at various length scales, down to the nanometer scale, even when they appear 

to maintain long-range order in the structure. In this chapter we discuss three representative 

cases that are of current interest, namely, ferroelectric mixed-oxides, manganites that 

exhibit colossal magnetoresistive phenomenon, and superconducting cuprates. 

10.1.1 PZT, Pb(Zrl-xTix)03 

Starting with PZ discussed in Chapter 8, replacing small amounts of Zr by Ti produces 

PZT, Pb(Zrl-xTix)O3. This brings about dramatic changes in the structure and dielectric 
properties. While PZ is antiferroelectric PZT is strongly ferroelectric for x > 0.05, and the 

symmetry of the structure changes from orthorhombic to rhombohedral (Jaffe et al., 1971). 

PZT is widely used as a ferroelectric or piezoelectric material, in various applications, 

typically in actuators and sensors. It is usually assumed that Ti drives the system to 
ferroelectricity, since Ti is more ferroelectrically polarizing. However, it is rather 
surprising to see such a small amount of additive Ti creating dramatic changes in the whole 

of the oxide structure and properties. For only 5% of Ti to drive the structure of PZT to 

ferroelectricity, PZ itself must have some tendency toward ferroelectricity. For instance, 
SrTiO3 (STO) has a high dielectric constant, and is almost ferroelectric. This is understood 

as a case of quantum paraelectricity in which the weak ferroelectricity is suppressed 
because of the diverging zero-point oscillations (Samara, 1971). Adding a small amount of 
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ferroelectric impurities to STO drives the system to ferroelectricity (Mitsui and Westphal, 

1961). However, PZ is strongly antiferroelectric (AFE) with the Neel temperature of 

511 K. How can only 5% of Ti kill such strong AFE? 

The pulsed neutron PDF gave a clear answer to this simple question. As shown in 

Figure 10.1 the PDF of Pb(Zr0.9Tio.l)O3 (PZT 90/10) is very similar to the PDF of PZ in the 

range up to 5 A, in spite of large differences in the average structure (Egami et al., 1997). 

Of course differences are large at larger distances, reflecting the difference in the long- 

range structure. This implies that upon addition of Ti the local structure of Zr does not 

change much. This is understandable since both Zr and Ti are 4 + ions, and replacing Zr 

by Ti does not change the Madelung energy too much. Instead, what Ti does is to change 

the way the local structural units are arranged by altering the connectivity condition of the 

local units. The ZrO6 octahedra are rotated around the (110) axes in PZ as mentioned 

above, while the Ti 4+ ion is small, and does not result in a local rotation. Consequently, Ti 

disrupts the connectivity of the local rotations so that the axis of rotation can change. 

Indeed, while the octahedra are rotated around (111 ) in the rhombohedral phase of PZT 

according to the average structure, locally the rotation axis is still close to (110) even in 

PZT (Teslic et al., 1997). The direction of the rotation axis changes randomly at the Ti ion, 

for instance from [ 110] to [ 101 ], thus on average the rotation axis appears to be (111). Such 

a rearrangement of local units, actually, is most commonly observed during phase 

transformations in many oxide compounds, as we will discuss also in Chapter 11. 

The change in the local rotation directly alters the AFE order. The origin of the AFE in 

PZ is the ionic size effect as we discussed in Chapter 8. Because Zr 4+ ions are relatively 
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Figure 10.1. PDF of PZ, PbZrO3, compared to that of PZT(90/10), Pb(Zr0.9Ti0.1)O3. Note the similarity 

below r --~ 5 ~, despite the different average structures (orthorhombic and rhombohedral, respectively) 
(Egami et al., 1997). 
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large (0.72 * ,  Shannon, 1976), the tolerance factor of PZ is 0.973. This leads to a buckling 

of the Z r - O - Z r  bond and a rotation of the ZrO6 octahedra. Since rotation of one 

octahedron results in the rotation of the neighboring octahedra in the opposite sense 

rotation results in doubling of the unit cell. In particular, it produces oxygen displacements 

with AFE order, which leads to AFE ordering of the Pb polarization. This chain of 

rotations can be broken by a small cation such as Ti 4+. Furthermore Pb polarization in PZ 

has ferroelectric fluctuations along the z-axis (Teslic and Egami, 1998). While the x- and 
y-polarizations have an AFE ordering, the z-axis polarization can develop ferroelectricity 

due to impurities such as Ti 4+. Thus FE and AFE are not incompatible in complex systems, 

and can locally coexist. The main difference is that the long-range part of the AFE coupling 

is elastic in nature, while the FE is an electronic phenomenon associated with the long- 

range dipolar field and covalency. 

10.1.2 Relaxor ferroelectric PMN, Pb(Mgl/3Nb2/3)03 

Ferroelectric materials have strong dielectric and piezoelectric responses that can be used 

in various applications. However, the strong response is limited to the vicinity of the 

transition (Curie) temperature, Tc, and is strongly temperature dependent. This presents a 

major problem in applications. On the other hand a class of materials called relaxor 

ferroelectrics show(s) much milder temperature dependence, and are very widely used in a 
number of applications. Relaxor ferroelectrics show a diffuse, gradual ferroelectric 

transition and frequency dependent dielectric response. The dependence of the dielectric 

response on frequency and temperature is very much like that of the mechanical or 

dielectric response of a glass, hence the origin of the name relaxor ferroelectric. The 

mechanism of relaxor ferroelectricity is obviously related to disorder, but its details are 

still controversial, as will be discussed below and in the next Chapter. 

A prototypical relaxor ferroelectric is Pb(Mg 1/3Nb2/3)O3 (PMN). In this compound the 
element of disorder is introduced by the occupation of the B-site by two ions with different 
valences (Mg 2+ and Nb 5+) and sizes (0.72 A for Mg 2+ and 0.64 A for NbS+). Interestingly 

the initial explanation of relaxor behavior in PMN went in the opposite direction by 

seeking order rather than disorder. Broad superlattice diffraction peaks were found at the 

1/2[111] type reciprocal lattice positions by electron diffraction indicating some ordering 

that doubled the lattice periodicity in the [111] direction (Husson et al., 1988). In other 
words, the B-site ions form two sub-lattices as in the NaC1 structure. It was proposed that 
Mg 2+ and Nb 5+ occupy each of these sub-lattices. But then local charge neutrality is 

violated, since the average charge of the A-site has to be + 4, because Pb is divalent in this 
compound, while the average valence of Mg +2 and Nb +5 is + 3.5. Consequently, it was 

argued, the ordered domain will not grow in size, resulting in nano-domains that are 

surrounded by a Nb rich matrix. Since these nano-domains are dielectrically separated, 

they are polarized randomly, and the glassy relaxor behavior is created. 
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However, this scenario has many problems. First of all, the charged domains of 
nanometer size would have a huge electrostatic energy. Secondly this picture was developed 

to explain the relaxor behavior of hetero-valent PMN, while the relaxor behavior is observed 
also in the homo-valent PZT, when a small amount of Pb is replaced by La, 

(Pbl-xLax)(Zrl-yTiy)O3 (PLZT), and this scenario fails to explain it. In this scenario the 
Nb concentration is different in the ordered domain and the rest. The ordered domain has less 
Nb than average, while the disordered matrix is Nb rich. Such a strong inhomogeneity of Nb 
distribution should be observable by the small angle scattering, while the measurement did 

not show such inhomogeneity (Egami et al., 1997). More importantly, recent work (Akbas 

and Davies, 1997) demonstrated in a very similar system, (Pb(Mg 1/3Ta2/3)O3)o.9(PbZrO3)0.1 
(PMT-PZ), relaxor behavior persists even when the chemical ordering extends to a macro- 
scopic scale (micron-size). This proves finally that the nano-domains are totally irrelevant to 

the relaxor behavior. The diffraction study of this system (Dmowski et al., 2000) showed that 
the 1:1 ordering into the NaC1 superlattice is made of Ta 5+ in one sublattice and the other in 

the other sublattice, and macroscopically there is no charge imbalance. 
The local structure of PMN determined by the pulsed neutron PDF method is very 

different from the PDF expected for the average crystal structure as shown in Figure 10.2 
(Egami et al., 1991). Crystallographically PMN has the structure of a nearly cubic simple 

perovskite, with a very slight rhombohedral distortion (note the rhombohedral distortion 

does not change the shape of the BO6 octahedron). However, the measured PDF reveals 
significant deviations of the local structure from the average structure. Not only are the PDF 

peaks broader, but there are peaks in the measured PDF that do not correspond to the peaks in 

the perovskite PDF. In particular there is a strong peak in the measured PDF at 2.45 ~,. 
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Figure 10.2. Pulsed neutron PDF of PMN, Pb(Mgl/3Nb2/3)O3, compared to the PDF calculated for the ideal 
perovskite structure found crystallographically for PMN (Egami et al., 1991). 
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Figure 10.3. PDF of PMN and PZT(65/35). Note the strong similarity despite the different average structures 
(Egami et al., 1998). 

It turned out that the PDF of PMN is surprisingly similar to the PDF of PZT, as shown in 

Figure 10.3, in spite of the difference in the crystal structure. Both PZT and PMN feature 

the 2.45 A peak (Egami et al., 1997). Since the PDF of PZT is similar to the PDF of PZ as 

shown in Figure 10.1, we can trace the origin of the 2.45 A peak to PZ, and find that it is 

produced by the short P b - O  bonds due to lone pair electrons as we discussed earlier. Thus 

the peak at 2.45 A indicates the local polarization of the PbO12 cluster (Figure 8.11). This 

leads to an idea that a simple picture may describe the dielectric behavior of Pb containing 

perovskite based ferroelectrics based upon the interacting PbO12 dipoles (Egami et al., 
1998). This subject will be discussed in Chapter 11. 

10.2. COLOSSAL MAGNETORESISTANCE (CMR) MANGANITES 

10.2.1 Colossal magnetoresistance phenomenon 
Magnetoresistance (MR) in metals is usually small, with Ap/p of the order of 0 .1-1% per 

Tesla. Recently metallic multi-layered thin films such as Fe/Cr were found to show much 
larger magnetoresistance (Ap/p --~ 0.1-0.5 T -I )  and the phenomenon was named 'giant 

magnetoresistance' (Parkin, 1995). Since these films can modulate electric current by a 

magnetic field, they are also called 'spin valves', and are now beginning to be used in 

magnetic recording heads and other devices. It was then recognized that the metal- 

insulator transition in oxides could be used in similar applications. In particular many of 

the manganite compounds (Rl-xAx)n+lMnnO3n+l ( R  : La, Pr, or Nd, A : Sr, Ba, Ca or 
Pb) are insulating in the paramagnetic phase but metallic in the ferromagnetic phase 
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(Ramirez, 1997). Thus, by applying a magnetic field an insulator-to-metal (IM) transition 
can be induced. Since the magnitude of the change in resistance in terms of -Ap/p(H) can 
be as large as 104, or 106%, this phenomenon was coined 'colossal magnetoresistance 
(CMR)' (Jin et al., 1994). 

The basic behaviors of the manganites were discovered already half a century ago 

(Jonker and Van Santen, 1950; Van Santen and Jonker, 1950), and the electronic 
mechanism to produce a ferromagnetic metallic phase was discussed by Zener (1951), 
Goodenough (1955), Hasegawa and Anderson (1955), and DeGennes (1960) in terms of 
the double-exchange (DE) mechanism. The magnetic interaction most commonly found 
in insulating oxides of transition metals (TM) is the antiferromagnetic (AFM) super- 
exchange (SE) interaction. Indeed the parent phase of the CMR manganites, LaMnO3, is 
an AFM insulator. If a hole is introduced in the AFM insulator, it is usually localized, 

since moving a hole in the AFM matrix will produce parallel spin configurations, which 
is energetically unfavorable. This state is called the spin-polaron, or magnetic polaron. 
However, the kinetic energy of the doped hole is reduced when it is not confined to one 
T M - O  orbital, but is shared in the T M - O - T M  bond. Note that in classical mechanics, 
itinerant particles have a higher kinetic energy. However, quantum-mechanically 
localizing an electron necessitates squeezing the wavefunction in a small space, creating 

a large spatial variation, which is proportional to the momentum. Thus delocalization 
results in the reduction in the kinetic energy. For electrons to be mobile, the spins on the 
TM ions have to be parallel. However, this also increases the kinetic energy, since twice 
as many electrons occupy one spin band. Thus if the energy gain due to delocalization is 

greater than the energy loss due to spin polarization, spins turn parallel and electrons 
become mobile. This is the DE interaction. If enough holes are doped into the system, 
they become delocalized, converting the whole system into a ferromagnetic metal. 

Recently, however, Millis et al. (1995) pointed out that the DE interaction is insufficient 
to explain the details of the CMR behavior. In particular the DE model fails to explain the 
high electrical resistivity of the paramagnetic phase. They suggested that a strong electron- 

lattice interaction provides the missing resistivity via lattice-polaron formation. A lattice- 
polaron is a charge carrier that is trapped in the elastic deformation it created. The simplest 
form of a lattice-polaron is an electron in the lattice of positive ions that are attracted to the 

electron (Figure 10.4). The attracted positive ions form a cluster of excess positive charge 
that traps the electron there. In perovskites, however, the situation is slightly more 
complex, since both cations and anions form the lattice. The doped holes attract cations but 

repel anions. In manganites the polarons are directly related to the Jahn-Teller distortion 
discussed in Section 8.1.4. Various direct and indirect experimental methods have been 
mobilized to detect the polarons, and successfully confirmed the presence of spin-lattice 
polarons as reviewed in Egami and Louca (2000). The PDF analysis played a major role in 

this process, and also provided further insight into the physics of CMR (Billinge et al., 
1996; Louca et al., 1997). 



Local Structure of Systems with Competing Interactions 345 

Figure 10.4. Schematic picture of a lattice-polaron. The charge carrier (in this case an electron) localizes 
in the lattice producing a localized region of negative charge. The system lowers its overall energy 

by polarizing the surrounding lattice of positive ions. 

An even more recent realization has been that these materials are electronically 

microscopically (and sometimes macroscopically) inhomogeneous. This is discussed in 
greater detail in Section 11.4. PDF analysis had a role to play here too by identifying a 
coexistence of localized polaronic and delocalized metallic states coexisting over wide 

ranges of temperature and composition, even deep in the ferromagnetic metallic phase 

where it was widely thought that the charges were delocalized and the material a 
homogenous metal (Louca and Egami, 1999; Billinge et al., 2000). In these two studies the 

results were interpreted slightly differently, in the one case in terms of polarons growing in 
size and percolating (Louca and Egami, 1999), in the other a nano-scale phase separation 

into metallic and small-polaron insulating domains that change their relative concen- 

tration, again percolating at the metal-insulator phase transition. Also, the systems studied 

were different: Lal-xSrxMnO3 and Lal-xCaxMnO3, respectively. However, the data are 
consistent and the message is clear: these materials are electronically inhomogeneous as is 

now rather well established (Section 11.4). 
In semiconductors a small amount of dopant (--~ 10 - 6 ,  Itoh et al., 1996 and references 

therein) is able to induce a transition from an insulator to a metal. In the CMR manganites, 

because of the formation of the spin-lattice polarons, the doped charge carriers are 

localized up to a high doping density of about 17%. At this charge concentration charge 

carriers become delocalized rather suddenly producing the insulator-to-metal (IM) 
transition. Before touching upon the issues related to this transition, which will be 

discussed in Chapter 11, let us review the information provided through the PDF studies on 

the perovskites and the layered manganite compounds. 
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10.2.2 Perovskite, L a l - x A x M n 0 3  (A = Ca, Sr, Ba, Pb) 

In Lal-xAxMnO3 the replacement of trivalent La by a divalent ion such as A = Ca, Sr, Ba 
and Pb reduces the effective valence of Mn, or equivalently introduces holes to the Mn-O 
band. If the doped hole is localized on the Mn 3+, a JT ion, it becomes, at least nominally, 

Mn 4+, (a non-JT ion). The exact state of the localized hole is an interesting problem by itself. 
With increased hole doping the JT distortion in the average crystal structure quickly 

becomes smaller, and disappears at about a doping level of x = 0.17, and the structure 
becomes rhombohedral (Urushibara et al., 1995). At 50 % doping, many of the manganites, 

such as La1/2Ca1/2MnO3, exhibit charge ordering, and become insulating. When the doping 
exceeds 50% the system remains a charge ordered antiferromagnetic insulator. 

In mixed-ion oxides such as Lal-xAxMnO3 the local structure is expected to deviate 
from the average because of the ionic size difference between La and A. However, such 

deviations are only indirectly important for the CMR phenomenon. Local deviations that 
are central to the CMR phenomenon are those due to polaron formation. The local structure 
of this system was studied by the XAFS method by several groups (Booth et al., 1996; 

Tyson et al., 1996; Lanzara et al., 1998). The XAFS experiment, however, suffers from the 
problem of intrinsic peak broadening of the PDF due to the form factor of electron 
scattering and the lifetime effect of photoelectrons as discussed in Appendix 3.4. 

Consequently the split in the M n - O  bond distances due to the JT distortion can be detected 
only by modeling. This introduces ambiguity that is model dependent. As a result the 
amount of split reported by the XAFS measurement varied widely, from 0.1/k (Booth 

et al., 1996) to 0.5 ,~ (Tyson et al., 1996). Nonetheless, the results of the XAFS studies on 
the M n - O  distances should be semi-quantitatively correct. 

More direct observations of local distortion due to polarons were made by using the 
pulsed neutron PDF method by Billinge et al. (1996) and Louca et al. (1997). As we 

discussed in Chapters 1 and 8, in LaMnO3 the MnO6 octahedra are Jahn-Teller (JT) 
distorted (Figure 1.8). This should be compared to the MnO6 octahedra in CaMnO3, which 
does not have JT distortion, since in this compound Mn is tetravalent (4 + ) and has no 
electron in the eg orbital. 

Billinge et al. (1996) studied the variation of the pulsed neutron PDF with temperature 

for Lal-xCaxMnO3, and noted that the peak height at 2.75/k changes anomalously with 
temperature as shown in Figure 1.10. Below Tc the height of this peak rises much more 
quickly with decreasing temperature for the samples with x = 0.21 and 0.25, than expected 
from the normal thermal effect. This peak in part includes the O - O  distances in the MnO6 
octahedra. Without the JT distortion each octahedron has 12 O - O  bonds that are 2.75 ,~, 

long, while with the JT distortion 8 of them become 3.0 A long. Consequently the PDF 

peak height at 2.75 A is reduced when there are local JT distortions. Thus the results are 
consistent with having polarons involving JT distortions above Tc that disappear below Tc. 

Direct evidence for this picture came from modeling the data. The changes in the local 

structure as the sample passes through Tr were observed by taking a difference between 
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the PDFs measured just above and just below the transition. The structural changes are 

significant compared to the errors on the data as is evident in Figure 6.6. These structural 

changes were well reproduced by a simple one-parameter model in which one-in-four 

sites, presumed to be the Mn 4+ polaron sites, were distorted by an isotropic 'breathing 

mode' collapse of 0.12 ,~ compared to the undistorted structure evident in the metallic 

phase. Because of the connectivity of the MnO6 octahedra this distortion also results in a 

JT distortion appearing on the sites neighboring the 4 + site. This model is shown 

schematically in Figures 6.6 and 10.5. Thus, in this model the insulating phase is found to 

be made up of JT distorted Mn 3+ sites and single-site Mn 4+ polarons whereas the 

ferromagnetic metallic phase is undistorted. The modeling was carried out at a doping 

level of x = 0.25 where the sample becomes significantly delocalized at low temperature 

(Billinge et al., 1996). As we discussed above, at lower dopings the localized polaronic and 

delocalized metallic domains coexist even at low-T. Nonetheless, the PDF provided direct 

structural evidence for the lattice-polarons involving JT distortions envisaged by Millis 

et al. (1995). These can be thought of as 'anti-JT' polarons since on the Mn 4+ site where 

the doped hole is localized, the local JT distortion is destroyed and the octahedron 

becomes isotropic. A representation of the polarons residing in the perovskite lattice is 

shown in Figure 10.5. 

Figure 10.5. Model of locally ordered polarons that polarize the Jahn-Teller distorted orbitals of neighboring 
octahedra. The size of the distortions is exaggerated for clarity (Billinge et al., 2000). 
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Louca et al. (1997, 1999) focused on the first M n - O  peak of (La, Sr)MnO3. The first 

negative peak of the PDF of LaMnO3 (Figure 1.8) is a doublet with a peak at 1.97 A and at 

--~2.17 ,~, indicating the JT distortion. The average crystallographic JT distortion 

decreases rapidly with increasing x and disappears at x > 0.17. However, the positions 

of these first two sub-peaks of the PDF are nearly independent of x, as shown in Figure 10.6. 

Thus locally the JT distortion remains unchanged in magnitude, while the average JT 

distortion decreases sharply with composition. In particular the local JT distortions are 

found to persist even in the metallic rhombohedral phase where all the M n - O  distances are 

equal in the crystal structure as shown in Figure 6.2 (though with doping, lattice strain 

quickly causes them to become unresolved). This discrepancy between the local and 

average structure can be explained only with the non-collinear local JT distortions. If the 

local JT distortions are randomly oriented in all x, y, and z directions with equal 

proportions, the local distortions cancel each other and the total JT distortion is absent. 

This directional randomization happens quickly with doping because of the isotropic 

orbital-polarizing effect of the Mn 4+ polarons themselves. To lower the lattice strain of 

forming a small polaron the orbitals on neighboring Mn 3+ sites tend to orient themselves 

such that the long-bonds point towards the small Mn 4+ octahedron (Billinge et al., 1996, 

2000). In this way, the decreasing JT distortion in the average structure can be explained by 

the gradual loss of JT orbital order with whole concentration. 

While hole doping does not change the M n - O  peak positions, doping modifies the peak 

intensity. The JT distorted MnO6 octahedron of Mn 3+ has four short (--~ 1.97 A) and two 
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Figure 10.6. The positions of the first two sub-peaks of the PDF for La,_xSrxMnO3 as a function of x at 
T = 10 K, compared to the Mn-O bond lengths determined from the crystal structure (Louca et al., 1997). 
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long (--~ 2.2 ,~,) M n - O  bonds, while that of Mn 4+ without the JT distortion has 6 short 

M n - O  bonds. Thus by counting the number of short bonds per Mn ion the number of Mn 

sites with JT distortion can be determined. This can be done by integrating the first sub- 

peak of the PDF (Section 6.2.2.2) to obtain the number of close O neighbors of Mn, NMn-O- 
The second sub-peak may partially overlap with the L a - O  peak at 2.56 ,~, and its area 

cannot be reliably assessed. NMn-O = 4 corresponds to fully JT distorted state as in 

LaMnO3, and 6 to completely undistorted state as in SrMnO3. It is useful to express NMn-O 
in terms of the fraction of the Mn sites without local JT distortion, r / =  (NMn_ o -- 4)/2. 

Since the Mn 4+ ion without local JT distortion is likely to be metallic, r/can be considered 

to represent the metallic volume fraction. The value of r/increases from 0 for x = 0, but the 

rate of decrease is temperature dependent. As shown in Figure 6.2 at room temperature the 

data lie near the straight line connecting r / =  0 for x = 0 and 1 for x = 1 (small polaron 

line), representing the mixture of Mn 3+ and Mn 4+. In other words above Tc the charge is 

localized on one Mn site, forming a small single-site polaron representing Mn 4+. 

At T = 10 K, however, the data of r/ are well above the small polaron line. It 

extrapolates to 1 at x --~ 0.32, with the slope about three times of the small polaron line. 

This result can be interpreted such that, at low temperature, each hole kills the JT distortion 

at three Mn sites; a polaron is extended over about three sites. This could be a consequence 

of antiferromagnetic spin correlation. If three spins are antiferromagnetically coupled 

( T I T ) by flipping the central spin they will become ferromagnetically aligned ( ]" ]" ]" ), 

allowing a hole to move easily through the three sites. Thus a polaron would become 

extended over three sites. 

Another interpretation is that the sample is phase separating on the nanometer length- 

scale into coexisting undistorted metallic and JT distorted insulating phases (which, 

interestingly, may have the same concentration of doped charges) with the metallic 

component growing on increasing doping. The MnO6 octahedra in the ferromagnetic 

metallic phase have six shorter bonds that would account for the fact that r/is increasing 

faster than the small-polaron line (Billinge et al., 2000). This behavior is illustrated 

in Figure 10.7 that shows the phase diagram of Lal-xCaxMnO3 with X-ray PDFs of the 

M n - O  near-neighbor peaks superposed. In the polaronic insulating regions at low doping, 

and at high-temperature in the higher doped region, short and long bonds are clearly 

apparent (the peak is a doublet). However, even in the metallic region (low-T high doping 

region) the peak also has a doublet structure except at the lowest temperatures and highest 

dopings. 

As the temperature is increased r/decreases continuously as shown in Figure 10.8. This 

implies that the total volume over which the local JT distortion is suppressed becomes 

reduced, as polarons become more localized or as the metallic component is destroyed. 

The PDF peak height at 2.75 ,~ follows this closely, since it also quantifies the same thing 

(Figures 1.10 and 10.8). 
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Figure 10.7. Schematic phase diagram for Laj-xCaxMnO3. 'I' and 'M' refer to insulating and metallic, 
respectively, and 'P', 'F' and 'AF' to paramagnetic, ferromagnetic and antiferromagnetic. Superimposed on 

the figure are the low-r X-ray PDF peaks showing the nearest neighbor Mn-O bonds. In the insulating phases 
the JT long-bond is clearly apparent. There is no JT-long bond deep in the FM phase that is not JT distorted. 

However, the long-bond gradually appears as the MI boundary is approached. The fully localized polaronic phases 
have dark shading. The light shading indicates the region where localized and delocalized phases coexist 
and the white region indicates homogeneous FM phase. The boundaries between the shaded regions are 

diffuse and continuous and are meant to be suggestive only (Billinge et al., 2000). 

10.2.3 Layered manganite, (Lat_xSrxMnO3)n(SrO) 

Among the perovskite related layered manganites,  (La/A),~+lMn,~O3n+l, known as the 

Rudd le sden -Poppe r  phases (Ruddlesden and Popper, 1958), the n -  2 and n = co 

(perovskite) compounds show the CMR phenomenon,  while the n = 1 compound is 

insulating (Moritomo et al., 1995; Mitchell et al., 1997). The two-layered (n = 2) 

manganite,  Laz-zxSrl+zxMn207, or (Lal-xSrxMnO3)zSrO, is made of two layers of 

perovskite structure and a single layer of SrO fluorite structure. The perovskite layer has an 

almost cubic structure, and shows a very small average JT distortion that changes with 

temperature and composit ion (Mitchell et al., 1997). This appears to suggest that the JT 

distortion is not important for the CMR behavior, and a very different mechanism is at 

work. However,  the pulsed neutron PDF determined by Louca et al. (1998) shows that 

locally the MnO6 octahedra are JT distorted, in a way very similar to the perovskite 

manganites. Figure 10.9 compares the PDF of the two-layered compound with that of a 

perovskite, LaMnO3. The shape of the M n - O  peak is very similar between the two. 
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Figure 10.8. Temperature dependence of the number of short Mn-O bonds per Mn site (above) and the 
PDF peak height at 2.75 ,~ (below) for Lao.825Sro.175MnO3 (Louca and Egami, 1999). 

In particular the presence of local long M n - O  bonds is evident even for the layered 
compound. Thus it is presumed that the nature of the polarons in the layered compounds is 
the same as that in perovskites, and polarons are the anti-JT polarons. 

The temperature dependence of NMn-O determined in the same way as in the perovskite 
is shown in Figure 10.10. Unlike perovskites, however, it changes completely 
smoothly through Tr ( =  117 K), and instead shows anomalous changes around 
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Figure 10.9. The PDF of Lal.6Srl.4Mn207 compared to the PDF of LaMnO3. In order to compare the intensity 

of the Mn-O peak correctly the PDFs are multiplied through (b 2) (Louca et al., 1998). 
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Figure 10.10. Temperature dependence of the number of short Mn-O bonds in Laj 6Srl 4Mn207 
(Louca et al.,  1998). Note that the data are continuous through Tc ( : 117 K). 

250 K. The measurement of spin excitation indicates that the magnitude of the exchange 

constant within the perovskite layer is similar to that in the three-dimensional perovskite. 

This suggests that strong two-dimensional ferromagnetic correlation develops well above 

Tc. It is thus possible that the conduction paths made of Mn sites without the local JT 

distortion are already formed above Tc but shows no overall metallic conduction because 

of the poor c-axis conduction. The temperature of 250 K, which is similar to the Tc of the 
three-dimensional perovskite, may signal the onset of such two-dimensional ferromagnetic 
correlations. 

The local structure of CMR manganites determined by the PDF method as discussed 

here is very different from the one suggested by the crystal structure. At the atomic 

scale, the real structure in many cases is very heterogeneous, with one local structure 
being different from another, in the same solid. The subject, however, is much deeper 

and very rich. In particular, charge distribution is suspected to be inhomogeneous at the 

atomic scale even in nominally metallic phases. It is most likely that charge 

inhomogeneity is an integral part of the complex phenomena caused by competing 
interactions. 

10.3. SUPERCONDUCTING CUPRATES 

10.3.1 Introduction 

Many similarities exist between the manganites and the high-temperature superconducting 

cuprates. The interesting properties of the manganites arise from competing electronic, 
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magnetic and lattice interactions. It now appears clear that a similar balance exists in 

the cuprates, though the role of the lattice has taken much longer to be recognized since the 

structural effects are much smaller and more subtle in these systems. In many respects, 

the lessons learned from the manganites have made the interpretation of data in the 

cuprates, especially from relatively new techniques like PDF analysis, clearer. Many of 

the ideas that have been described above relating to the structural and electronic effects 

of heavily doped perovskite transition metal oxides carry over to the cuprates; phase 

transitions due to structural misfit, disorder due to chemical doping, a structural response to 

charge doping and mixed valency, and so on. The PDF technique has had a role to play in 

studying the role of these effects on the properties, though because of the smaller structural 

responses, the picture is still less clear and work is ongoing. There is an enormous body of 

work amounting to many tens of thousands of papers on high Tc cuprates. Here we simply 

summarize some of the contributions that the PDF has made in this area. 

10.3.2 Structural transitions in La2_x(Sr, Ba)xCu04 

Like the perovskite manganites, the CuO6 octahedra forming the CuO2 planes in this 

system become buckled due a mismatch between the rocksalt LaO2 layer and the copper- 

oxygen planes. The symmetry of this buckling in undoped La2CuO4 is orthorhombic 

(Bmab) up to To "~ 500 K, and above this temperature the symmetry is tetragonal 

(14/mmm) (Jorgensen et al., 1988). The value of To depends on oxygen stoichiometry 

(Johnston et al., 1987). In the orthorhombic phase the local CuO6 octahedra are tilted 

around the [110] axis. This is a typical case of the effect of tolerance factor discussed 

above. The tolerance factor in this compound is 0.979, resulting in a compressive stress in 

the CuO2 plane and an expansion in the LaO layer. To relieve these stresses the CuO6 

octahedra are tilted, resulting in the orthorhombic structure. 

Replacing some of the La with larger Sr ions eases the stresses, and To decreases with 

increasing Sr content (Fleming et al., 1987). At 21% of Sr the orthorhombic distortion in 

the crystal structure disappears. The tilts disappear due to a relaxation of the mismatch 

since both the LaO2 layer expands due to the incorporation of larger Sr or Ba ions and the 

CuO2 planes contract because doped copper (nominally Cu 3+) makes shorter bonds with 

oxygen. At low temperature in the Sr doped system the local tilts, measured using the PDF, 

also decrease their amplitude with doping following the average structure supporting this 

general picture (Bozin et al., 1999) as shown in Figure 10.11. Above 20% doping small 

residual tilts of --~ 2 ~ remain in the local structure, probably due to the disordering effect of 

the Sr dopants. This is also supported by the fact that the residual tilt amplitudes in the Ba 

doped system are larger which is expected since Ba is a much larger ion than St. 

The average octahedral tilts also decrease with increasing temperature and this was 

interpreted in the same terms. In this case the argument is that the thermal expansivity of 

the LaO2 layer is greater than that of the CuO2 planes and at some temperature the misfit 
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Figure 10.11. Comparison of local octahedral tilt angle measured from the PDF at 10 K (filled circles) with 
average tilt angle determined using Rietveld (open circles). The local and average tilts agree excellently 

except in the high doping region where significant local tilts persist despite the disappearance of 
the average tilts. Residual tilts are presumably due to dopant ion disorder (Bozin et al., 1999). 

disappears. Whilst this may be partially true, the PDF technique indicates that significant 
local tilt amplitude survives at high-temperature in the tetragonal phase where the average 
tilts are zero. The tilts are thus becoming dynamic above the transition temperature with 
the octahedra precessing around the average c-axis in analogy with the crystalline silica 
described in Section 9.3.3 (Egami et al., 1988; Sendyka et al., 1992; Bozin et al., 1999). 

1 0 . 3 . 3  Octahedral tilts are coupled to doped charges 

Through the pioneering observation of charge stripes by Tranquada et al. (1995) in 
La2-x -  yNdySrxCu04 we now know that doped charges are strongly coupled to the 
octahedral tilts. In this system, and in related La2-xBaxCuO4, doped holes form into long- 
range ordered stripes separating undoped regions of antiferromagnetic spin order. This 
effect is only seen when the octahedral tilts have (100) symmetry, i.e. the tilt axis lies along 
the copper-oxygen bond. This is different from the (110) tilts in the undoped end member. 
There are a number of possible reasons for this, but before exploring them it is worth 
emphasizing the main point that doped holes are coupled to the lattice otherwise they 
would not express a preference for the octahedral tilt direction! One reason for the 
preference for (100) tilts is simply that these tilts have the same symmetry as the stripes 
and the formation of the stripes drives the structure into this symmetry. A topological 
analysis has been carried out by Bozin et al. (unpublished) based on the well-established 
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assumption that doping holes into the C u O  2 plane shortens the C u - O  bond. In this case a 

localized doped hole will locally destroy a tilt. This introduces a defect into the overall 

tilt structure. It can be shown by topological considerations that in a background of 

(110) symmetry tilts this defect causes the plane to break up into domains of (110) 

order with different orientations of the ordering vector (Figure 10.12(a)). Introducing a 

second such defect is equally costly. In the case of (100) tilts the doped hole defect 

generates a line defect in the tilt background, which can accommodate further doped 

holes at no additional cost. Thus, there appears to be a natural tendency for doped holes to 

create locally (100) tilt structures. These only order over long-range and become 

observable if the charges freeze into a static, long-range ordered stripe phase, e.g. in 

Laz-xBaxCuO4 and Laz-x-yNdySrxCu04 at 1/8 doping. PDF data show that the local 
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Figure  10.12. Topological models of the tilt disorder when an untilted defect (due to a doped hole, indicated by 
a filled circle) is placed into a background of (a) (110) 'LTO' tilts and (b) (100) 'LTT'  tilts. Note that in the 
LTT case, the untilted octahedron results in a line-defect whereas in the LTO case the plane breaks up into 

rotated domains of LTO order. Only in the LTT case untilted octahedra can further be accommodated 
without energy cost (indicated by dashed lines). There is thus a natural stripe formation tendency 

for doped holes in the (100) 'LTT' tilted phase (Bozin and Billinge, unpublished). 



356 Underneath  the Bragg  Peaks  

structure in the doped lanthanum cuprates (though not the undoped end member, Bozin 

et al., 1999) is consistent with the presence of local tilt amplitude and directional disorder 

as expected from this picture (Figure 1.7) (Billinge et al., 1994; Bozin et al., 1999). 

Similar doped-hole induced changes to the local structure may also hold the key 

to a long-standing controversy about possible disorder of apical oxygen atoms in 

YBazCu306+a (Gutmann et al., 2000). Again the doped holes shorten the Cu-O  bond, 

but in this case the copper is not sitting on a center of symmetry and the structure responds 

by shifting the Copper towards its apical oxygen neighbor. Inhomogeneous doping will 

thus lead to a distribution of copper positions, consistent with modeling of PDF data 

(Gutmann et al., 2000), and possibly explaining the observation of two Cu-apical oxygen 

bond distance in XAFS data (Conradson et al., 1990). 

10.3.4 Dynamic charge stripes and inhomogeneous doping 
The role of charge stripes to the superconducting phenomenon is tantalizing but 

controversial. This is discussed in greater detail in Section 11.6. One of the outstanding 

questions is whether charge stripes exist in superconducting samples (and indeed in the 

superconducting state). There is at least circumstantial evidence for this from the 

observation of incommensurate spin fluctuation peaks as well as from a number of 

different spectroscopic measurements. What is lacking is direct structural evidence. 

Because the stripes are fluctuating they are not visible in the average structure, though their 

signature should be present in the local structure. Evidence for them has been found using 

the arguments that we made above. Doping shortens the C u - O  bond. A charge stripe is a 

highly doped region separating an undoped region. In the presence of charge stripes 

therefore there should coexist locally short and long C u - O  bonds, similar to what was 

observed in the manganites. The difficulty is that, the difference between the short and long 

bonds in the manganites was 0.2 ~,, whereas in the cuprates it is closer to 0.02 ~,, 

10 • smaller. This is certainly beyond the resolution of an XAFS or PDF measurement 

whose resolutions are limited, in the best possible circumstances, by thermal and zero- 

point motion to around 0.1 ,~. Nonetheless, a search was made in a series of La2-xSrxCuO4 

samples and a peak broadening of the nearest neighbor C u - O  peak was observed that 

increased with doping. In fact, the peak width in the PDF of La2-xSrxCuO4 increases with x 

initially, and then decreases beyond x - 0.15, mimicking Tc itself, as shown in Figure 1.6. 

Both the peak broadening and the intermediate range structure could be described well in 

terms of mixing two phases, one for x - 0 and the other for x -- 0.25. Since the x -- 0 

phase must be insulating and the x - 0.25 phase must be metallic, this result indicates that 

the charge distribution in cuprates is not homogeneous. This conclusion is consistent with 

recent phonon measurements that also suggest that the charge state in cuprates is 

inhomogeneous (McQueeney et al., 1999; Petrov et al., 2000). The misfit strain that builds 

up due to the short bonds in the charge stripe and the long bonds in the intervening region 
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also provides an elastic mechanism for breaking up the stripes and preventing them 

from becoming static and long-range ordered, except in special cases such as 

La2-x-yNdySrxCu04 and La2-xBaxCuO4, where significant structural compliance exists 
in the form of large amplitude tilts coming from the misfitting dopant ions (Billinge and 

Duxbury, 2001, 2002). This is discussed in greater detail in the next chapter. 

These results are remarkable in that they suggest that the local structure of cuprates is 

inhomogeneous in the superconducting state. For a long time disorder has been considered 
to be detrimental to superconductivity. In cuprates, however, local disorder appears not 

only to be compatible with superconductivity but even to enhance it (Egami and Billinge, 

1996). At this moment theoretical developments are not sufficient to allow satisfactory 

interpretation of these observations, even though many models have been proposed. What 

is clear is that the high-temperature superconductivity is an unusual phenomenon, very 

different from the BCS superconductivity which is well understood, and the knowledge of 

the local structure might facilitate its understanding. 
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Chapter 11 

Phase Transitions 

11.1. LOCAL CORRELATIONS AND PHASE TRANSITIONS 

The subject of phase transitions is central to materials science and condensed-matter 
physics. This is partly because phase transitions bring about changes in properties that are 

often drastic and sometimes useful, but also because the phenomenon itself is singular and 
fascinating. A good example is the ferroelectric phase transition. As has been discussed for 
PT in Section 8.1.3, below the ferroelectric Curie temperature, Tr a ferroelectric crystal 

has an electric dipole moment and none above. Actually, even below Tr a large crystal has 
no macroscopic polarization until an electric field is applied, since it has many ferroelectric 
domains with antiparallel polarizations. But within the domain the solid is uniformly 

polarized. In terms of crystallography a crystal is centrosymmetric above Tc, but loses 
centrosymmetry below. This transition represents a major qualitative change of the nature 
of the crystal. 

Since phase transitions produce a change in the long-range order and macroscopic 

properties, they are usually studied from the global, long-range, point of view. For 
instance, the second-order phase transition is characterized by the correlation length 

diverging at the transition. The success of the renormalization group theory (Wilson, 1975) 
comes from making exact connections between the local interactions and the large length- 

scale fluctuations. Thus it may appear that the PDF method that describes only the local 
correlations is not the fight tool to study this phenomenon at all. However, as we will see 
below PDF studies provide knowledge of important microscopic interactions that the 

measurement of the long-range order parameters cannot reveal. At the same time we have 
to caution that it can cause unwanted confusion unless the results are interpreted correctly. 

For instance, the PDF method is an excellent technique to study ferroelectricity since a 
local polarization produces different cation-anion bond distances. This can be seen as 
splitting of the metal-oxygen PDF peak in ferroelectric metal oxides. As an example, the 

PDFs of ferroelectric BaTiO3 and PbTiO3 (PT) were shown in Figures 8.5 and 8.6. The 
splitting of the T i - O  distance in Figure 8.6 indicates a strong ferroelectric polarization of 
Ti within the TiO6 octahedron. However, if one measures the PDF of such a material 
through the ferroelectric phase transition, the PDF often appears almost unchanged as 

shown in Figure 11.1 (we saw this too in BaTiO3, Figure 8.5, and silica at the oL-[3 phase 

transition, Section 9.3.3 and Figure 9.19). What is going on? One interpretation, which is 
quite often made, is that the crystal retains the local atomic scale polarization even above 
Tr and the phase transition is of the order-disorder type, as was discussed in connection 
with BaTiO3 (Section 8.1.2). This conclusion appears to be in conflict with the popular 
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Figure 11.1. Pulsed neutron PDF of PT at T = 508 and 473 K, above and below the ferroelectric phase transition 
temperature (above), and difference (below) (Teslic and Egami, 1998). 

view that the ferroelectric phase transition occurs because of soft-phonons, as explained 

below. How can we reconcile these two apparently opposing views? In order to resolve this 

conflict we have to understand the dynamics and spatial correlation associated with the 

ferroelectric phase transition. 
The first point to be considered is the dynamics of the phase transition and the phonon 

soft-mode. The ferroelectric soft-mode is the transverse optical (TO) mode in which 

cations are out of phase with anions. When the mode with q = 0 (infinite wavelength) 

becomes static, cations will be displaced in one direction while anions are displaced in the 

other resulting in long-range ferroelectricity. The mode becomes static when its frequency 
becomes zero and this is the origin of the name 'soft-mode'. As the temperature is lowered 

towards the phase transition, the frequency of this particular q = 0 phonon mode gradually 
decreases (the 'spring' soften) until it reaches zero at the phase transition. The soft-mode 

theory provides a very natural description of the ferroelectric transition. 
A more general description of second-order phase transitions is given by the Landau- 

Devonshire theory (Landau and Lifshitz, 1958; Salje, 1990; Gonzalo, 1991). In terms of 

the ferroelectric order parameter, ~b, the free energy near the phase transition can be 
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expressed up to the fourth order in ~b as 

G = G o 4- A dp Z 4- B qb 4 4- . . . (11.1) 

The free energy is minimized when 3G/3ch = 0, i.e. 

2A q~ 4- 4Bq~ 3 = 0 (11.2) 

Thus, 

~ - A  
4, = ~-g (11.3) 

The order parameter, ~b, is zero above the transition and finite below it, going continuously 

to zero at the transition. Thus, at Tr A = 0 and below Tc, A < 0. In the mean-field 
approximation, A is linear with T: 

A = A o ( T  - Tc) (11.4) 

Ferroelectric materials are piezoelectric so that the ferroelectric polarization is coupled to 

the elastic strain. The coupled system can then be described by 

D 2 G = Go + a q~ 2 + B~b 4 - iVq~ + -~-~ (11.5) 

where e is the strain, F is the coupling constant, and D is the elastic constant. Elastic strain 

is a tensorial property, but for simplicity it is presented as a scalar here. By minimizing G 

with respect to e, we obtain 

D 
~b-- -~e  (11.6) 

Thus Eq. 11.5 becomes 

] BD4 4 A D  1 ~2 + e (11.7) 
G =  Go + D F2 - -~ - - ~  

which is minimum at 

I 

D I A o ( T  T~) , F :  
e0 = -~ V 2B ' T~ = r c  4- 2A0-----D (11.8) 

indicating that the critical temperature is shifted from Tc to 2Vc due to the piezoelectric 

coupling. Expanding G around the minimum, we obtain 

D* D* 2A~ 
G -- G M + ~ d 8 2  4- . . - ,  -- /-,2 (T~ - T) (11.9) 
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Thus the effective, or renormalized, elastic constant, D *, vanishes at ~c, and the phonon 

mode associated with polarization, usually the TO mode, becomes zero in energy TO mode. 

Now it is important to be reminded that the spallation-neutron PDF method has a natural 

dynamic window estimated to be 10-20 meV. If the energy of the soft-phonon mode 

enters this window because of mode softening, the lattice displacements slow down 

(critical slowing-down), and appear static to neutrons (Figure 11.1). This is why, with the 

neutron PDF, the atomic polarization appears to persist above To. Another point is that the 

correlation length of the ferroelectric polarization becomes longer as the temperature 

approaches Tc, so that from the local perspective long-range order appears to exist even 

when it is not static and infinite in range. For these reasons, from the viewpoint of the PDF, 

atomic polarizations appear to exist well above Tc. However, this is not inconsistent 

with the soft-mode theory. From the point of view of the critical phenomena, the dynamics 

of the PDF measurement is too fast, and the length-scale too small, to capture the 

critical fluctuations near Tr As we noted at the onset the PDF method is not the method 

of choice if one tries to measure the critical fluctuations. On the other hand, the PDF 

method offers other interesting insights into the phenomenon, as we discuss below. 

11.2. PHASE TRANSITIONS IN COMPLEX MATERIALS 

11.2.1 Hierarchy of atomic bonds 

Since the strength of an atomic bond varies a lot from one species to another, in complex 

materials involving a large number of atoms the atomic bonds often have a natural 

hierarchy, and organize themselves into groups of strongly bound atoms. For instance, in 

oxides the bond between a metal and oxygen (M-O)  is a strong covalent bond, while the 

metal-metal  (M-M)  interaction is weaker and ionic. The energy scale of the M - O  bond is 

of the order of eV, thus too large to be influenced by thermal energy, except for some cases 

such as the Jahn-Teller distortion in manganites and cobaltates. Thus the local unit, such 

as BO6 in the perovskites, behaves as a molecular unit. This is why the nearest neighbor 

local structure in solids appears to change so little with temperature, and often even 

through phase transitions. On the other hand, the energy scale of the interaction between 

these units is comparable to the thermal energy. What changes with temperature, therefore, 

is usually the second and third neighbor structure, determined by the interaction among the 

local units. Consequently, the order in the intermediate distances (3-10  ,~) holds the key to 

understanding the properties. The PDF method has a unique strength in probing such 

distances, as has been demonstrated for the case of mixed ferroelectric oxides. The XAFS 

method gives the distance to the nearest neighbor, but information about further neighbors 

quickly diminishes. Electron microscopy provides some information of the local structure, 

but only after averaging over the thickness of the sample. 
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11 .2 .2  E f f e c t  o f  d i s o r d e r  

In second-order transitions described by Eq. 11.1 the order parameter is spatially 
homogeneous, and changes continuously as a function of temperature. However, elements 
of disorder, such as chemical compositional disorder due to alloying, tend to make the 

transition spatially inhomogeneous and diffuse. This is understandable since disorder 
produces the 'local transition temperature' to be distributed, although a very small amount 
of disorder would not make a difference. The question is how much disorder the system can 
tolerate before the transition becomes diffuse. Depending on the strength and length scale 

of the disorder, either the critical fluctuations can smear the effect of disorder (weak 
disorder), or on the other hand the disorder can smear out the transition (strong disorder). 
The well-known Harris criterion states that the critical exponent of the specific heat is 
negative in the first case and positive in the second (Harris, 1974). 

The PDF provides interesting insight on this problem. An example of the correlation 
smearing disorder is the case of mixed-cations in ferroelectric systems resulting in the 
relaxor ferroelectric transition discussed in Chapter 10. For instance, relaxor behavior is 
observed in PZT when some Pb is replaced with La. As shown in Figure 11.2 the PDF does 
not show marked changes even when the relaxor behavior sets in and ferroelectricity is 

destroyed. Replacing Zr with Ti already introduces disorder so that PZT is already strongly 
disordered. Additional disorder due to La brings about the relaxor behavior, which is why 

the amount of La necessary to induce the relaxor behavior decreases with the increasing Ti 
content. The mechanism of relaxor behavior is discussed below. 

11.2 .3  N o n - l i n e a r i t y  a n d  f i r s t - o r d e r  t r a n s i t i o n s  

Another factor that can destroy the second-order transition is a strong non-linearity of 
the interaction. A simple example is the theory of melting by Born (1939). While the 

applicability of this particular theory to this phenomenon is highly questionable (Tallon, 
1984; Egami, 1997), it nicely illustrates the point. Let us consider the Hamiltonian of a 
harmonic oscillator with a higher order non-linear term, 

H -- htoa + a - Aa + a + aa (11.1 O) 

where a and a + are phonon annihilation and creation operators, and A > 0. The equation 
of motion for this system is 

[a ,H]  = h w a  - 2Aa+aa  (11.11) 

which, in the random-phase approximation, becomes 

[a ,H]  -- htoa - 4A(a+a)a  = h a ] a  (11.12) 

where d is the renormalized frequency. Thus, the phonon softening is proportional to 
the phonon density. Self-consistency requires 
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Figure 11.2. PDF of PLZT, (Pb~-3/2xLxx)(Zr]-yTiy)03, for various La contents (Teslic et al., 1994). Little 
change happens in the PDF even though the dielectric behavior changes markedly. 

1 (11.13) 
(a + a) = ehOi/k r _ 1 

By solving these equations iteratively the temperature dependence of the phonon 
frequency can be calculated. At a certain temperature a catastrophic softening takes place 

resulting in the first-order transition. There is a feedback mechanism in this system: the 
average phonon occupancy, (a+a),  increases as to~ decreases (Eq. 11.13), but to~ itself 
decreases with increasing (a +a) (Eq. 11.12). An easy way to see the catastrophic behavior 
at a critical value of d is to use a high-temperature approximation for Eq. 11.13, 

k T  
(a+a)  "- (11.14) 

ha/  

Then from Eq. 11.12, 

I 4 A k T  
to = t o -  (11.15) 

hzto t 

and 

tot to .+. 

h 
(11.16) 
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The critical temperature is given by 

h 2 o) 2 
Tc -- (11.17) 

16kA 

where o)~ discontinuously jumps from o)/2 to zero. 
First-order transitions result in a macroscopic or microscopic phase separation. Global 

properties such as conductivity are then determined by percolation of the different phases. 
It is possible to use the PDF analysis in a direct way to determine the state of microsegre- 
gation and the nature of the phase transition. For instance, the spatial correlation length of 
ionic displacements can be determined by modeling the PDF, up to about 30 A at present, 
and possibly up to larger distances with greater computing power. In the homogeneous 
second-order transition the correlation length diverges at the transition, while in disordered 
systems it remains finite, and the transition occurs through percolation. An example is the 
metal-insulator transition in CMR oxides discussed below. Both theoretical and 
experimental evidences are accumulating supporting the idea of phase-separation in 
certain cases. 

11.3. PHASE TRANSITIONS IN SYSTEMS WITH COMPETING INTERACTIONS I: 
RELAXOR FERROELECTRICITY 

11.3.1 Origin of spin-glass behavior 
Let us go back to the subject of relaxor ferroelectricity introduced in Chapter 10 and 
discuss its microscopic mechanism. As we discussed there the origin of the relaxor 
behavior in the proto-typical relaxor, PMN, was attributed in the beginning to the local 
ionic ordering with charge imbalance. This idea, however, has been shown to be invalid, 
and other mechanisms based upon an atomic interaction have been proposed. 

The phenomenon of relaxor ferroelectricity has many similarities to disordered 
magnetic systems; spin glasses in particular (Viehland et al., 1992). Thus, we should first 
briefly review spin-glass behavior before discussing relaxor ferroelectricity. A spin glass is 
produced by three mechanisms, namely random exchange, random field and random 
anisotropy. In all cases the second element with randomness is introduced which is in 
conflict with uniform ferromagnetism. 

11.3.1.1 Random exchange. In a typical, 'Heisenberg', magnetic system, magnet, local 
spins interact via the Heisenberg exchange interaction 

H =  - ~ . J u S i . S j  (11.18) 
i , j  

When J is uniformly positive ferromagnetism results, since parallel spins minimize 
tile energy. But if the exchange interaction turns negative for a particular bond, it will disturb 
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the local spin configuration. If enough local exchange interactions turn negative, the long- 
range ferromagnetic order becomes no longer stable, and the system collapses into a spin 
glass (Sherrington and Kirkpatrick, 1975). A typical phase diagram is shown in Figure 11.3. 

11.3.1.2 Random field. If a local field with random direction is applied on each spin, the 

Hamiltonian becomes 

H - - ~ .  JijSi.Sj - -  txg ~ .  Hi'Si (11.19) 
i,j i 

Imry and Ma (1975) have shown that for an order parameter with continuous symmetry 

(such as the Heisenberg magnet) the ordered state is unstable against any random field in 
dimensions less than four. The question is then how large the correlation is compared to the 
sample size. If the magnitude of the applied field is comparable to the exchange field the 

direction of the spins vary strongly from site to site, resulting in the spin-glass state. 

11.3.1.3 Random anisotropy. Spins interact with the lattice through the spin-orbit 
coupling and the crystal-field gradient. The lattice tries to orient the spin in a specific 

direction. Such a force can be described in terms of the local anisotropy energy, 

Ea ~- X X Brff Y~ (si/S) (11.20) 
i s 
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Figure 11.3. The phase diagram of a spin-glass ferromagnet, an analogue for the mixed FE-AFE system 

(Sherrington and Kirkpatrick, 1975). 
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where Y~(S/S) are the spherical harmonics. If the local easy axis, along which the 

anisotropy energy is minimum, is not uniform the collinear spin state is unstable. In this 

case as well ferromagnetism is unstable no matter how small the anisotropy is (Alben et al., 
1978; Pelcovits et al., 1978). However, there is a fairly well-defined threshold below which 

the behavior is indistinguishable from a ferromagnet. 

The total Hamiltonian, i.e. the sum of the exchange Hamiltonian (Eq. 11.18) and 

the anisotropy energy (Eq. 11.20) may be further simplified by rotating the local axis 

in the direction of the easy spin polarization, and retaining only the g : 2, m - - 0  

term. The total Hamiltonian is called the Harris-Plischke-Zuckermann (HPZ) 

Hamiltonian (Harris et al., 1973). The behavior of the system described by the 

HPZ Hamiltonian is now well understood. The critical parameter is the ratio between 
the average values of the Heisenberg exchange constant Jij and the local parameter 

B(ri), B/J. Theoretically, the system described by this Hamiltonian is always a spin 

glass; however, the magnetic correlation length ~ strongly depends upon the B/J ratio 

(Chi and Egami, 1979). Up to a critical value of B/J ~ is so large that the system 

behaves like a regular ferromagnet. As the value of B is increased the system crosses 

over to a non-ergodic spin glass. 

11.3.2 Mechanism of Relaxor Ferroelectricity 
By analogy to spin glasses ferroelectricity can be destroyed and a spin glass-like relaxor 

state can prevail if an element, or elements, that compete against ferroelectricity are 

introduced randomly with sufficient strength. We will first examine the dielectric 

equivalents of three mechanisms that destroy ferromagnetism. 

11.3.2.1 Antiferroelectric interaction. An antiferroelectric (AFE) interaction usually 

originates from the rotation of the local units, such as BO6 tetrahedra discussed in Chapters 

8 and 10. Because of connectivity through oxygen, the rotation of one BO6 in one sense 

induces the rotation of the neighboring BO6 in the opposite sense. This produces AFE of 

oxygen displacements, which usually induces an AFE displacement of A cations as well. 

The rotation of BO6 octahedra occurs because of the tolerance factor being less than unity. 

To accommodate small A site ions BO6 octahedra are rotated to reduce the B - B  distance. 

Thus AFE occurs for large B-site ions such as Zr. The competition between the AFE and 
FE interactions can bring about the relaxor behavior (Chen et al., 1996). 

11.3.2.2 Random field. The local polarization can be tilted away from ferroelectricity by 
a local electric field. The most natural origin of the local field is the presence of 
heterogeneous ions, such as Nb 5+ and Mg 2+ in PMN. Theories based upon this idea were 

developed by Klemann and his associates (Westphal et al., 1992). In their theory the local 

variable is not the atomic-level polarization, but the polarization in the polar nano-domain. 



370 Underneath the Bragg Peaks 

11.3.2.3 Random anisotropy. Random occupation of the B-site by different ions in 

PMN produces another local force equivalent to the local anisotropy that could produce the 

relaxor behavior (Egami, 1999). This is particularly applicable to the energetics of the local 
orientation of the Pb polarization. As shown in Chapter 10 Pb 2+ ion is always strongly off- 

centered in the PbO12 cluster due to the lone-pair electrons, forming a strong local dipole. 
These dipoles are not free to rotate, since the off-centering of Pb in the Oi2 cage is 

produced by the displacement of oxygen ions rather than the displacement of Pb ions, thus 
the rotation and distortion of the BO6 octahedra are intimately connected to the Pb 

polarization. Consequently, the Pb dipoles can interact elastically through these B-site 

ions. Also the compositional make-up of the B-site around Pb and the configuration of the 

BO6 octahedra determine the most likely direction of the Pb polarization. The magnitude 
of the dipolar moment is estimated to be p : 1.6 x 10 -19 C A, corresponding to a very 

significant polarization of P -- 0.22 C/m 2, even assuming a Pb valence of + 2. The value of 

p will be larger if we use the correct Born effective charge. 

The local moments, p, interact with each other via various fields. We may describe this 

system by an effective Hamiltonian, 

H~ -- ~" J(rij) Z Qr~(pi)Qs ) (11.21.) 
i,j s 

where P/is the local polarization of the ith Pb ion, Q~e (Pi) are the spherical harmonic 

equivalents of Pi, for instance Qo(p) = 1/213p2 _ P2], etc. The g - 1 term describes the 

pseudo-dipolar interaction due to the electric dipolar fields and hybridization fields through 

ferroelectrically active B-site elements. The g -- 2 term corresponds to the quadrupolar 

interaction due to strain fields. The local dipolar moments interact also with the lattice, 

since the rotation of the local moments requires displacements of oxygen ions that are 

coupled to the B-site cations. This dipole-lattice interaction may be described by the local 

anisotropy Hamiltonian, 

Ha = ~.  ff~(rij)Q~(Pi) (11.22) 
i 

The g = 1 term describes the local electric field, while the g = 2 term does the steric or 
elastic field that tends to confine P along one direction which may be called the easy axis. 
In PMN, each Pb ion has about 3 Mg 2+ neighbors and 5 Nb 5+ neighbors. The electric field 

due to these heterogeneous charges cannot be expressed by a single electric field such as 

Eq. 11.19, but requires a tensorial description of Eq. 11.22. The dielectric properties of the 
interacting Pb dipoles should be described by the total Hamiltonian which is the sum of 

Eqs. 11.21 and 11.22, which is equivalent to the HPZ Hamiltonian for spin glass discussed 

above. 
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11.4. PHASE TRANSITIONS IN SYSTEMS WITH COMPETING INTERACTIONS II: 
CMR MANGANITES 

11.4.1 Charge localization in CMR manganites 
As we discussed in Chapter 10, the colossal magnetoresistance (CMR) phenomenon occurs 

when the applied field delocalizes charge carriers. This is possible when polarons that 
localize charge carriers are barely stable, and can be destroyed by the applied field. Thus 
the central question is the stability of the polarons. We will now turn to this question and 

demonstrate how the knowledge of the local structure helps to elucidate the stability of 
polarons and the CMR phenomenon. While the CMR phenomenon in manganites is 

complex, involving magnetism and orbital ordering, in this discussion we focus on the 
electron-lattice interaction alone to simplify the argument. Within this scope, the stability 
of lattice polarons is dictated by the competition between the kinetic energy that tends to 
delocalize the carrier and the electron-lattice coupling and spin correlations that tend to 

localize it (Millis et al., 1995, 1996, R6der et al., 1996). The relevant terms to describe the 
electron-lattice interaction due to the Jahn-Teller  (JT) effect are given by 

K 
HJT __ - g  ~ qini _~_ -2  ~ q2 (11.23) 

i i 

where qi is the ionic displacement parameter and ni is the excess charge density of the ith 
ion that causes the JT effect; g characterizes the strength of the electron-lattice coupling 
and K is the elastic modulus. Minimizing H JT with respect to q gives the JT displacement, 

(q), and the JT energy, EjT , 

(q) = g(n) <HJT>0 __ g2<n>2 

K ' EjT = -- N 2K (11.24) 

Now let us consider creating a single-site polaron, such as Mn 4+, by eliminating the JT 

distortion from one site. The energy cost, however, is not just EjT, since deforming one 
lattice site creates a long-range stress field around it. Rewriting Eq. 11.23, 

 ni)2 
H J T - - ~ /  -~- q i - -  --~-- -- 2-----K (11.25) 

If we assume n i = 0 only at the site k and equal to (n) elsewhere, the energy will be 

(Hrr)p -- -2- qk2 + Z 2 u/2 -- EJT 
i#k 

(11.26) 



372 Underneath the Bragg Peaks 

where u = q - (q). We thus obtain the anti-JT polaron energy 

K K ~ 
Ep - -  (HJT)p  -- (HJT)0  - -  _~_ ( (q )2  _4_ q2) + -2- ~ u 2 

i # k  

[ -- 1d- ( ~ + ~ - .  - ~  -~(q)2=REjT (11.27) 

where/r is not necessarily equal to K, depending on the mode of accommodation of the 
local strain. Since qk and qi are all proportional to (q), the renormalization factor, R, is 
independent of (q), and depends only upon the local structure. This point is usually 
unnoticed or neglected, but becomes important later in the discussion of the ionic size 
effect. The polaron energy competes against the electron kinetic energy 

+ + 
H DE - -  - t  y .  O'ij(CitrCjt  r -+- CjtrCitr) (11.28) 

(i,j)~r 

where summation is made for the interacting neighbors, o- denotes spin, and ~rij describes 
the spin correlation between ith and jth spins which is proportional to cos(0/2), where 0 is 
the angle of the spins S/and ~ make. The critical parameter for polaron formation is (Millis 
et al., 1996; R6der et al., 1996) 

g2 
A = (11.29) 

RKt(cos(O/2)) 

By simulation, it is known that there is a critical value, Ac, for polaron stability, so that 
when A > Ac, polarons are stable. As temperature is raised spins become more disordered, 
so that (cos(0/2)) decreases, increasing the value of A. This stabilizes polarons, and 
increases the resistivity rapidly near Tc, resulting in the CMR phenomenon. 

11.4.2 Ionic size effects 
The CMR effect depends not only on temperature, but also on the ionic size of the A-site 
ion. As shown in Figure 11.4 (Hwang et al., 1995) when the average A-site ionic radius 
(rA) is large the system is metallic. If the ionic radius is reduced, keeping the charge 
concentration constant, resistivity increases and the Curie temperature decreases beyond a 
certain radius, and eventually the system becomes insulating in spite of the high charge 
density. Thus the polaron stability strongly depends upon (rA). Conventional thinking on 
this effect is to focus on the structure dependence of the electron hopping, t, through the 
bending of the M n - O - M n  bond. As the M n - O - M n  bond is bent the M n - O  hybridization 
decreases because the Mn-d orbital and the O-p orbital overlap less effectively. However, 
actually this effect is too small to account for the observed change (Radaelli et al., 1997a; 
Fernandez-Baca et al., 1998; Dzero et al., 2000). 
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Figure 11.4. The ferromagnetic Curie temperature of A0.7A~.3MnO3 system as a function of the average A-site 
radius, (rA) (Hwang et al., 1995). When (rA) is small Tc is low and the system is insulating, while when it 

is large Tc is high and the system is metallic. The CMR behavior is observed 
at the crossover region. 

On the other hand, the effective elastic constant can also be structure dependent, and in 

our view this is much more important (Egami and Louca, 1999, 2002; Louca et al., 2001). 

The dependence of the elastic constant K itself on the ionic radius of the A-site ion is small. 

However, the polaron formation energy is renormalized by the long-range stress field 

around it and the renormalization factor R depends upon the structure. As shown below 

when the radius of the A-site ion is large the value of R is nearly 1.5, but at a certain critical 

size it becomes reduced to unity. 

When LaMnO3 is doped with a divalent ion, thus with a hole, an anti-JT polaron is 

created as shown above. At the polaron site, the two long M n - O  bonds of the JT-distorted 

MnO6 octahedron are shortened to become two short M n - O  bonds. If the M n - O - M n  

bond is straight, this local bond contraction produces tensile strains in the bonds nearby, 

where M n - O  bonds have to be stretched (longitudinal accommodation, Figure 11.5(a)). 

Thus local contraction of the M n - O  bond creates a long-range stress field. According to 

the continuum mechanics theory of Eshelby (1957), the total elastic energy is about 3/2 of 

that without the long-range stress field. Consequently, the effective coupling constant, Eq. 

11.29, is nearly halved (Egami and Louca, 2002). On the other hand, if the M n - O - M n  

bond is strongly buckled, the local bond contraction can be accommodated by 
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s L 

Figure 11.5. (a) Longitudinal accommodation of the strain to eliminate the JT distortion locally when the 
M n - O - M n  bond is straight. This results in a long-range strain developing. (b) Transverse 

accommodation when the M n - O - M n  bond is buckled. In this case the bond shortening 
can be accomplished without a long-range strain developing (Egami and Louca, 1999). 

straightening the buckled bond (transverse accommodation, Figure 11.5(b)). In this case, 

the local contraction of the M n - O  bond is screened by the transverse oxygen mode and 
does not propagate to the next Mn site. Thus the renormalization is essentially absent 

(R = 1). Consequently, the effective coupling constant h changes by nearly a factor of two 

depending on the ionic size, and becomes much reduced as the size of the A-site ion is 

reduced. When (rA) is smaller than 1.20 ,~, the value of h is large enough to stabilize 

polarons and the system is insulating. If (rA) is larger, the value of h is reduced to a half 
and polarons will not form, resulting in a metallic state. A similar argument was used 

successfully in explaining the polarons in linear chain compounds that show a Peierls 

distortion (Batistik et al., 1993). 
The condition for the crossover from longitudinal to transverse accommodation can 

be readily derived based upon the knowledge of the local structure. In LaMnO3, the 

M n - O - M n  bond in the plane is made of a combination of long and short M n - O  bonds. 

When a polaron is created, the long bond becomes a short bond, and the M n - O - M n  bond 

is made of two short M n - O  bonds. The lattice has to be able to accommodate this 

shortened M n - O - M n  bond. In other words the critical condition is 

RMn_Mn = 2RMn_o(S ) (11.30) 

where RMn_Mn is the M n - M n  distance, and RMn_o(S ) is the short M n - O  bond length. 
These values are determined from the PDF of A I-xA~xMnO3 as shown in Figure 11.6. This 

yielded the critical condition 

(rA)crit -- 1.20/~, (11.31) 

for the nine-coordinated ionic radius (Egami and Louca, 1999, 2002). 
If the radius of the A-site ion is smaller than the critical value equation 11.31, the 

polaron becomes stable, and the system becomes insulating. While polarons are 
theoretically mobile, in this system they are pinned, or Anderson-localized, by chemical 

inhomogeneity due to mixing of different ions, and polaronic system is usually an insulator. 
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Figure 11.6. The short M n - O  distances measured from the PDF compared to one-half of the M n - M n  distance, 
as a function of the A-site ionic radius (Egami and Louca, 2002). 

In the crossover regime, the polarons are marginally stable and are influenced easily by 

external factors such as the applied magnetic field, producing the CMR phenomenon. 

It should be noted that this argument on the critical ionic size requires no adjustable 

parameter, and the value is obtained directly from the observed M n - O  bond length. The 

prevailing theory based upon the band narrowing, on the other hand, cannot give the ionic 

size that corresponds to the critical value of A without numerical calculations. Thus, there 

is no particular physical importance to the ionic size that produces the crossover, and high 

accuracy of calculation would have been required to produce agreement with experiment. 

The mechanism discussed above is basically geometrical, thus robust and does not require 
calculations of electronic structure. 

The discussion so far assumed hole doping into LaMnO3. If we start from the other side, 
A2+Mn4+O3, and replace A 2+ with a trivalent ion, the situation is very different. In this 
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case we are doping an electron that produces a local JT distortion and a JT-polaron in the 

matrix that is free of the JT distortion. The local JT distortion increases the M n - O  bond 

length locally, which can be accommodated by buckling the M n - O - M n  bond. Thus a JT 

polaron is always stable, and the system is always an insulator for x > 0.5. This results in 

the asymmetry between the hole doping and electron doping. Stable polarons in x -> 0.5 

often order, forming a polaron lattice. 

The dependence of polaron stability on the ionic size and charge density can be 

summarized in the phase diagram shown in Figure 11.7 (Egami and Louca, 1999). At small 

doping levels of holes, the system is insulating up to a percolation concentration as 

discussed later. The CMR phenomenon is observed in the crossover region indicated in 

the diagram. This phase diagram is in excellent agreement with the experimental phase 

diagram by Ramirez (1997), if we note that the radius of La (1.22 ,~ in Figure 11.8) 

corresponds to the covalent radius of 1.7 A. 

Another phenomenon worth mentioning here is the isotope effect (Zhao et al., 1996). 

It is particularly interesting that the sample with 180 has a lower Tc than that with 160, and 

the difference increases with a decreasing A-site ionic size. The dependence on the size of 

the A-site ion may be explained in the following way. Usually 180 has a smaller vibrational 

amplitude than 160 does, since the phonon amplitude is proportional to 1/,v/-M. Thus the 

Figure 11.7. Phase diagram of the ionic radius of the A-site ion vs. the concentration of the divalent ion, x. 
The CMR behavior is observed in the crossover regime where polarons are marginally stable and 

are influenced easily by external forces (Egami and Louca, 1999). 
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Figure 11.8. The experimentally determined diagram of Tc as a function of the 'covalent radius' representing 
(rA} and the hole density, x (Ramirez, 1997). This phase diagram corresponds well to Figure 15 

if the vertical axis is rescaled so that the position of La (1.34 A in Figure 15 and 1.7 A, in 
Figure 16) is adjusted accordingly. 

zero-point vibrational amplitude (u 2) of oxygen is reduced, reducing both the C u - O  

and A - O  distances due to the anharmonic effect. But, since the C u - O  bond is much stiffer, 

the change in the A - O  distance is greater, increasing the buckling of the M n - O - M n  

bond. This will increase the stability of the polarons in the line of argument above, 

resulting in the suppression of Tc. The effect is more pronounced if the A-site ionic radius 

is close to the critical value. This will explain the dependence of the isotope effect on the 

ionic radius. This provides further evidence of the polaron stabilization mechanism 

through bond bending. 

11.5. LATTICE INVOLVEMENT IN THE METAL-INSULATOR TRANSITION 
AND THE CMR EFFECT 

11.5.1 Metal-insulator transition as a function o f  charge density at low temperatures 

As shown in Figure 6.2, the data for the fraction of Mn sites with local JT distortion, ~/, as a 

function of doping, x, are continuous through the M - I  transition. The value of r / is  only 

about 0.5 at the M - I  transition, and remains non-zero even in the metallic phase up to 

x --+ 0.32. A similar result was obtained recently also for the L a - C a  system (Billinge et al., 

2000). These data appear to indicate that the polarons survive in the metallic phase close to 

the MI transition boundary (Figure 10.7). This, however,  is a very strange notion since the 

tendency of localization by forming polarons and metallic conductivity are not mutually 
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compatible. Usually, the high dielectric constant of the metallic phase reduces the polaron 

binding energy and delocalizes the carriers. 

A percolative picture emerges from these results (Egami, 1996; Egami et al., 1997; 

Louca et al., 1997; Egami and Louca, 2000). As the density of polarons is increased, they 

start to become in contact. If the polarons are single-site polarons, charges will remain 

localized even if two polarons are in contact because of the high coulomb repulsion to 

place two carriers on the same site (Hubbard, 1963). However, if the polarons are more 

extended over several sites, as is the case for (La/Sr)MnO3, the coulomb repulsion between 

two carriers is small and charge carriers will become mobile within the connected network 

of the polarons. If the size of the network of the connected polarons reaches a macroscopic 

scale, metallic conduction commences by percolation. At the M - I  transition the number of 

short M n - O  bonds is about five, as shown in Figure 6.2, indicating that the volume fraction 

of the undistorted, metallic sites is 50%. This is consistent with the percolation in a two- 

dimensional square lattice (Zallen, 1983). The percolative nature of M - I  transition was 

discussed very extensively for doped semiconductors by Phillips (1997, 1998). The power 

law for the concentration dependence of conductivity is given by o- ~ (x - Xcrit) 1/2 (Itoh 

et al., 1996 and references therein). Phillips (1997, 1998) has derived this relationship and 

demonstrated its fundamental importance to the conductivity, possibly even supercon- 

ductivity, of complex electron systems. Indeed the data for (La,Sr)MnO3 (Urushibara et al., 

1995) follow this law quite well as shown in Figure 11.9. 
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Figure 11.9. Low temperature conductivity of Lal-xSrxMnO3 from Urushibara et  al. (1995) plotted vs. charge 
density (or doping). The solid curve is the fit by a ( x  - Xc) 1/2. 
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In this picture, the carriers in the connected pathways are not localized, but flow through 
the metallic channels within which the JT distortion is locally suppressed. In-between the 
metallic channels, however, the JT distortion is locally alive, the charge density is low, and 
conductivity is very low. We may call these regions 'insulating' islands. This proposal was 
strongly criticized in the beginning since it differed from the commonly accepted notion of 
total cartier delocalization. However, within a few years theoretical works arrived at this 
picture of phase segregation as well (Gor'kov and Kresin, 1998; Yunoki et al., 1998a,b; 
Moreo et al., 1999). In addition, a similar 'two-fluid' model was proposed by analyzing the 
transport data (Jaime et al., 1998). The picture of percolative MI transition is now very 
widely accepted (F~ith et al., 1999; Uehara et al., 1999). The magnetic coupling within the 
insulating islands could either be antiferromagnetic or ferromagnetic, depending upon the 
presence of local orbital ordering. If the orbital moments are ordered in the zigzag manner 
as in the layers of LaMnO3, the superexchange interaction is ferromagnetic. Since the 
metallic samples are fully magnetized at low temperatures, ferromagnetic interaction 
appears to win over the antiferromagnetic interaction. 

This percolative picture explains various observations quite well, such as the 
antiferromagnetic fluctuation near Tc (Perring et al., 1997), strong spin wave softening 
and damping (Lynn et al., 1997; Hwang et al., 1998), relatively low conductivity 
(Urushibara et al., 1995), smeared Fermi edge (Dessau et al., 1998), and small thermo- 
power (Zhou et al., 1996). In particular, the ARPES studies show that the electronic 
dispersion is well defined only up to about 1 eV below the Fermi level, and near the Fermi 
level it becomes totally smeared (Dessau et al., 1998). This smearing could be evidence of 
scattering by the split eg levels. Where the JT distortion is locally present, the eg level 
should be locally split and the potential locally lowered by A/2 = 0.7 eV. This distortion 
will scatter electrons within A/2 from the Fermi surface, as is observed. 

11.5.2 M e t a l - i n s u l a t o r  transi t ion at Tc 

The pulsed neutron PDF revealed the fundamental difference in the local lattice behavior 
near Tc between the perovskites and the layered compounds. In the perovskites ~/changes 
sharply at Tc indicating a rapid change in the volume of the metallic conducting phase 
(Figures 1.10 and 10.8). The magnetic transition is achieved by a catastrophic collapse of 
polarons into a metallic volume, indicating that the nature of the transition is of first-order. 
On the other hand, in the layered compound, ~/changes smoothly through Tc (Figure 
10.10), just as in the case of the metal-insulator transition as a function of x (Figure 6.2). 
The magnetic transition is achieved by coherence of spin and local JT distortion, or in other 
words orbital ordering, while the metallic volume changes continuously. This is indicative 
of a second-order transition. 

11.5.2.1 Perovski te .  As temperature is decreased through Tc in the perovskite, the 
fraction of the volume in which the JT distortion is suppressed, r/is increased sharply as 
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shown in Figure 10.8. This increase must be indicating partial, but not total, delocalization 

of the carriers through the DE interaction. Indeed, an increase in conductivity is 

accompanied by the increase in r/as indicated in Figure 1.10 in terms of the PDF peak 

height at 2.75 ,~. Thus, it is expected that the parts of the sample without the local JT 

distortion are metallic and ferromagnetic since the DE interaction should be dominant 

there. The sharp change in the conducting volume at Tr must be indicative of a first-order 

phase transition, as suggested by the temperature dependence of the magnetization 
(Ramirez, 1997). However, the value of r/remains less than unity, except at T = 0 for x 

greater than ---0.3 for Lal-x(Sr,Ca)xMnO3 (Figure 6.2 and 10.7, Louca and Egami, 1999; 

Billinge et a/.,2000), leading to a two-phase picture and the percolative view of the 

transport phenomena. This approach can explain the transport data qualitatively rather well 
(Mayr et al., 2001). Details of the morphology of the two-phases require a separate 

discussion given below. 

11.5.2.2 Layered compounds. The temperature dependence of 77 through Tc of the 

perovskite is in strong contrast to that of the layered compound Lal.4Srl.6Mn207 

(Figures 1.10 and 10.8). In Lal.4Srl.6Mn207, the metallic volume changes smoothly 
through Tc while the lattice constant undergoes a discontinuous change. Such a behavior 
is typical of an order/disorder-type second-order ferroelastic phase transition in which 

the local units of distortion that are randomly oriented at high temperatures become 

aligned at Tc (Salje, 1990). At high temperatures (> 250 K), the axis of distortion of MnO6 
octahedra is randomly oriented, and carriers appear to be in the single-site polaronic state. 

Below 250 K carriers could become more delocalized, resulting in two-dimensional local 

metallic islands, although there are controversies about the transport data. The presence of 

strong in-plane spin correlation above Tc and the absence of its divergence at Tc support 

this view (Osborn et al., 1998). These islands are not fully connected, and c-axis 

conduction is very poor. Consequently, conductivity is low even in the a - b  plane. At Tc, 
the local JT distortions (orbital moments) start to align along the c-axis, and three- 

dimensional metallic conduction commences. For that reason it is likely that the driving 

force for this transition is not only the spin correlations, but also the orbital ordering. 

It is not quite clear whether the local JT distortion in the layered compounds is the 

same as in the perovskite, producing an elongated octahedron with four short and two long 
M n - O  bonds, or different, resulting in a pyramid with five short and one long M - O  bonds. 

The axial symmetry of the layered compounds appears to prefer the second. However, 

the magnitude of the local JT distortion is as large as the one in the perovskite. Note that 

the total JT distortion in the crystal structure is an order of magnitude smaller than the 

local JT distortion even at low temperatures. As was discussed above this implies that 

the local JT distortions are nearly randomly oriented. Almost 2/3 of the local JT distortions 

are in the plane, with the distortion along the c-axis slightly exceeding 1/3. Thus the total 
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symmetry is not as important as it might appear, and it is most likely that the local 

chemistry produces an environment very similar to that in the perovskite, with two long 

and four short M - O  bonds around an Mn 3+ ion. In this scenario, the local M - I  transition 

within the plane takes place around 250 K where the number of short M n - O  bonds is about 

5.0 (Figure 10.10), which is consistent with the density of the JT-distorted sites at Tc for 

the perovskite as shown in Figure 6.2. Thus the transition around 250 K must be 

percolative, while the transition at Tc is due to the three-dimensional ordering of the spin 

and orbital moment. 

11.5.3 Spatial distribution of charge carriers in the metallic state 

As we have shown above, the metallic state just above the critical charge density for the 

M - I  transition is in a two-phase state. It is not clear, however, how these two phases are 

mixed in space. One extreme is macroscopic phase separation (PS) that happens when the 

attraction between the charges is strong. The attractive interaction originates from the 

elastic interaction to ease the local elastic strain due to the local JT distortion, and the DE 

interaction to reduce the kinetic energy. However, the price to pay for charge segregation is 

the hefty electrostatic energy. When the attractive interaction overcomes the repulsive 

force PS would occur. The other extreme is the charge ordered (CO) state. Modeling the 

PDF in the medium range suggests that the size of the charged region is of the order of 

15 A. Growing beyond this size would cost too much electrostatic energy. 

In Figure 11.10 the PDF of La0.sSro.2MnO3 [20%] is compared to that of Lao.6Sr0.4_ 
MnO3 [40%] at T = 10 K (Egami and Louca, 2000). Here the r-axis of the 40% sample is 

scaled by 0.6% so that the lattice constants of the two samples match. At T = 10 K the 40% 

sample is metallic without JT distortion whereas some local JT distortions are left in the 

20% sample. Indeed the PDF of the 40% sample is very close to the PDF calculated for the 

average crystal structure, while that of the 20% sample deviates considerably from the PDF 

of the average structure. The two experimental PDFs in Figure 11.10 differ considerably at 

short distances, while the difference becomes smaller beyond about 15/k, and falls to the 

level of the noise. This observation implies that the local JT distortions in the 20% sample 

are uncorrelated in orientation and magnitude beyond 3 --~ 4 times the lattice constant, a. 

Should the phase segregation exist this length-scale of 15 A must be the correlation length 

of the two phases. For three-dimensional correlations, this correlation domain includes 

only 30 --~ 60 Mn ions, and in two-dimensions only 15 Mn ions. Such an object can barely 

be called a phase. This result suggests that the large-scale charge segregation is highly 

unlikely in this system, mainly because of electrostatic repulsion. On the other hand, the 

correlation length of 15 A is not short either, suggesting that the polarons self-organize 

themselves locally to some extent. For instance, the strong correlation at 5.5 ~, (= ~/2a) 

indicates a local short-range ordering of orbital moments in the 20% sample. It is also 

interesting to note that the correlation length of 15 A is close to the periodicity of 



382 Underneath the Bragg Peaks 

0 . 2 5  . . . . . .  . �9 . , . . . .  I �9 ' ' �9 , ' . , . . . .  

0 . 2 0  ............ 4 0 %  

0 . 1 5  
A 

010  

n ~  0 . 0 5  

o.00 

- 0 . 0 5  I 
0 . 1 0  : : ' J J : : ~ ~' J ; : . I ' ; ~ : : : : : ' ' ;  . . . .  

0 . 0 5  

0 . 0 0  

i5 -o.o5 
- 0 . 1 0  " " ' ' . . . .  ' . . . . .  ' . . . . . .  ' . . . . . .  

5 1 0  1 5  2 0  2 5  3 0  

r (A) 
Figure 11.10. The PDF of Lal-xSrxMnO3 (x -- 0.2, 0.4) determined by pulsed neutron scattering. The r-axis 

of the PDF of 40% sample is scaled by 0.6% so that the lattice constants match. The difference 
after scaling (below) shows that the two structures are very similar in the length-scale larger than 15 ~,. 

Thus, the local JT distortions in the 20% sample are uncorrelated beyond 15 ,~, suggesting that the 
charge correlation length may be of the order of 15 ,~ (Egami and Louca, 2000). 

the charge stripes expected for this composition. It is possible that the charges are ordered 

in the short range into local stripes. 

11.5.4 Charge ordering 

The charge-ordered (CO) state has been observed for various rational values of x, typically 

for x-> 0.5 (Ramirez et al., 1996; Cheong and Hwang, 1999). Polaron stability is an 

important issue for this phenomenon as well, since bare electrons do not become ordered to 

form the Wigner lattice unless the density is very low and temperature extremely low. Only 

the heavy dressing of electrons by phonons, forming polarons, increases the effective mass 

sufficiently so that they can become ordered. Thus the CO state should be considered as a 

polaron lattice, where polarons are ordered in a periodic manner. The fact that both PS and 

CO state occur in the same phase diagram indicates that the repulsive and attractive forces 

among the charge carriers are very close in strength, and almost balanced. It should be 

noted, however, that in real samples the degree of charge ordering is less than perfect, 

possibly disturbed by the distribution of La and Ca ions. Thus, the distortion of the MnO6 

octahedra in the average structure (Radaelli et al., 1997b) can be much smaller than that 

of the real local structure. The PDF measurement (Louca, 2001) suggests the magnitude 
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of the JT distortion is again as large as in the undoped LaMnO3. The CO state can be 

disrupted by the application of electric or magnetic fields resulting in a metallic state 

(Asamitsu et al., 1995), indicating that the CO state is only marginally stable. 

The configuration of orbital moments at x = 0.5 includes alternating long-shor t  and 

shor t -shor t  M n - O  bond combinations; and for this pattern to be stable, the shor t -shor t  

M n - O  bond combination has to be either free of strain or bent, but not in tension. This 

agrees with the crossover condition above (Eq. 11.31) and suggests that charge ordering at 

x = 0.5 will not take place when (rA) is larger than (rA)CR. However,  where the value of 

(rA) is reduced below this value, charge ordering will take place, localizing the carriers and 

depressing or eliminating Tc. Where the value of x is close to 0.5, apparently charges still 

can order locally, thus pulling down Tc. This tendency is clearly shown in the experimental 

result of Figure 11.11 (Tomioka et al., 1997). Thus, a theory of a finer scale has to be 

developed to account for the actual values of Tc within the crossover regime in Figure 11.7. 

11.6. PHASE TRANSITION IN SYSTEMS WITH COMPETING INTERACTIONS III: 
HIGH-Tc CUPRATES 

11.6.1 Suppression o f  superconductivity at charge density o f  1/8 

The phase diagram of Lae-xBaxCuO4 has an anomaly at x = 1/8, where Tc sharply nose 

dives to zero. A similar, and clearer, behavior is observed for Lae-x-yNdySrxCu04 
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Figure 11.11. Curie temperature of R1-xSrxMnO3 system as a function of the A-site atomic size expressed in 
terms of the tolerance factor. At x = 0.5 as the size decreases Tc is quickly suppressed below t = 0.976 

(Ndo.sSr0.sMnO3) which corresponds to (rA) = 1.384 A in our definition (XII coordination) (Tomioka et al., 1997). 
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(y = 0.4). When Tr is suppressed around x = 1/8 both magnetic and lattice satellite peaks 
were observed around the Bragg peaks, indicating that the spin and charge structure has 
been modulated (Tranquada et al., 1995). The magnetic periodicity determined from the 
position of the satellites is 8a, while the charge periodicity is 4a. The magnetic satellites 
are observed around the 1/2[110] point in reciprocal space, while the charge (lattice) 
satellites appear at the 1/2[ 100] point. Tranquada et al., (1995) suggested that the structural 
modulation takes the form of the spin-lattice stripes. In this model the charge stripes run 
along the [ 100] direction at every fourth lattice spacing (Figure 11.12). The charge stripe is 
also an antiphase domain boundary in the antiferromagnetic order, as predicted by Zaanen 
and Gunnarson (1989), so that the magnetic periodicity is twice the charge periodicity: 8 
lattice spacings. Charges have strong one-dimensional characters in this phase as revealed 
by the Hall effect measurement (Noda et al., 1999) and photoemission (Zhou et al., 1999). 
The stripes are non-superconducting but semiconducting. 

One of the requirements for the stripes to appear is the so-called low-temperature 
tetragonal (LTT) phase, clearly indicating the role of the lattice. In the orthorhombic phase 
the CuO6 octahedra are tilted around the [ 110] axis, while in the LTT phase they are tilted 
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Figure 11.12. Examples of domain structures made of broken charge stripes stabilized by the lattice misfit strain 
energy. Circles and crosses indicate the positions of copper atoms in the CuO2 plane, the double circles 

indicate charges localized on copper sites forming into stripes (Billinge and Duxbury, 2001). 
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around the [100] axis. Apparently, the [100] tilt stabilizes the [100] charge stripes as we 
discussed in Section 10.3.3. The charge stripes could be considered as one-dimensional 
array of polarons. Indeed the condition to stabilize the stripes appears to strongly resemble 
those to stabilize polarons in CMR manganites. If the C u - O - C u  bond is buckled beyond a 
certain angle, about 3.6 ~ in LSCO (Bfichner et al., 1994) and 5.5 ~ for YBCO (Chmaissem 
et  al . ,  1999) superconductivity disappears. Thus the stripe phase and super- 
conductivity compete against each other (Tranquada et al., 1997). Just as stable polarons 
resulted in the insulating state for the manganites, stable stripes result in non- 
superconducting state for cuprates. Furthermore, as marginal stability of polarons was 
required for the CMR effect, marginal stability of stripes may be a prerequisite for 

superconductivity (Egami, 2000; Egami and Louca, 2002). 
The observation of the spin-charge stripes was extremely important in proving the 

suspected microscopic phase separation can really happen in cuprates and we should not be 
just thinking in terms of a homogeneous electron state. Since this is such a remarkable 
breakthrough, many have postulated that the dynamic stripe state can produce the 
superconductivity itself through dynamic stripes, or in terms of stripe defects such as stripe 
edge dislocations (Kivelson et al., 1998; Zaanen, 2000). This requires the stripes to be 
broken, not ordered over long range. Interestingly, the lattice may have a role to play in 
breaking up the stripes because of the electron-lattice coupling described above. As we 
described in Sections. 10.3.3 and 10.3.4 the doped charges shorten the C u - O  bond. If the 
doped charges form into stripes with undoped material in between a misfit stress therefore 
builds up at the interface. As the stripe gets longer this stress increases until the energy cost 
to add an additional hole exceeds the energy gain from the hole joining the stripe. This 
leads to a stripe breakup length that depends on the ratio of the energy of the stripe 
dislocation to the misfit stress energy (Billinge and Duxbury, 2001, 2002). The broken 
stripes form a nano-scale ferroelastic domain structure, as shown in Figure 11.12 much the 
same as the tweed structures seen in martensitic alloys (Shenoy et al., 1999). The domain 
size depends on the misfit strain that may explain the difference in Tr between different 
cuprate systems as discussed in Billinge and Duxbury (2001, 2002). 

Whilst the presence of nanoscale structural and charge inhomogeneities is strongly 
suggested the actual presence of dynamic charge stripes in the superconducting state is not 
confirmed. In fact the relevant charge fluctuation may not be the dynamic stripe state 
(q = ~r/2). Recent phonon measurements (McQueeney et al., 1999; Egami et al. 1999; 
Petrov et al., 2000) suggest that dynamic short-range Peierls charge fluctuation with the 2a 
periodicity (q = ~r) may be present in the superconducting LSCO and YBCO. Occurrence 
of such Peierls instability is only reasonable, since, after all, the system is a doped Mott 
insulator with a nearly half-filled band. Indeed calculations suggested such a possibility 
(Sachdev and Read, 1991; Sachdev, 2000; R6der et al., 1993; Ishihara et al., 1997; Petrov 
and Egami, 1998). It is possible that the competition between the Peierls state and the stripe 
state is preventing either from developing into the long-range order, and that is important 
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to superconductivity, since long-range charge order (CDW) will suppress superconduc- 
tivity (Egami et al., 1999). 

11.6.2 Role o f  the Lattice in high-temperature superconductivity 

Various unusual local lattice dynamics have been observed for cuprates that exhibit high- 
temperature superconductivity (Egami and Billinge, 1994, 1996). Since high-temperature 
superconductivity is a highly unusual phenomenon, it is not surprising that unusual 
behaviors are observed, but the question whether this indicates the significant role of the 
lattice or not is controversial. The conventional thinking on the origin of the high- 
temperature superconductivity in cuprates is that it is purely an electronic phenomenon 
involving spins, and the lattice (phonon) has little to do with it (Anderson, 1997). In this 
view all the lattice related phenomena are just the consequences of superconductivity with 
a short coherence length, and they are irrelevant to the mechanism. Indeed it is practically 
impossible that the conventional phonon mechanism (BCS theory) results in high- 
temperature superconductivity. 

However, the BCS mechanism is not the only way phonons become involved in 
superconductivity. In systems with strongly correlated electrons the electron-phonon 
coupling also affects the spin systems, and there are possibilities of various synergies 
involving spin, charge and lattice. For instance, recent calculations (Piekarz and Egami, 
2003) suggests that phonon-induced charge transfer (Egami et al., 1993) can be spin- 
polarized in strongly correlated electron systems, resulting in unconventional electron- 
phonon coupling. This could lead to synergetic effect of phonon, charge and spin, and could 
contribute to unusally strong pairing in the cuprates. While the details need to be studied 
further it is clear that opportunities exist for phonons to be involved in superconductivity in 
cuprates in unconventional ways. The PDF method played no small part in bringing the role 
of the lattice on high-temperature superconductivity under a spotlight. 
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Chapter 12 
Concluding Remarks 

For a long time since the development of the X-ray diffraction technique in the early 20 th 

century determining the atomic structure of a solid has meant determining the crystal 

structure, by carrying out a diffraction measurement and analyzing the data with 

crystallographic methods. If one occasionally ran into a glass, the structure would be 

termed "amorphous", i.e. structureless, and the analysis would be practically abandoned 

there. However, sophistication in materials development brought about a major class of 

materials that are neither perfectly crystalline nor totally amorphous. Such a material, 

a crystallographically challenged material, would fall right into the gap of the existing 

techniques of structural analysis. And yet the details of the atomic structure usually have 

profound effects on their properties. In this book we discussed how to determine the 

structure of such a complex material, mainly borrowing from the method of structural 

analysis for glasses and liquids. Compared to glasses and liquids, however, the systems 

have much stronger local atomic order. In order to characterize such short- and medium- 

range order quantitatively the data have to be collected with high accuracy and the analysis 

has to be carried out with great care. But when it is executed properly the power of the 

method is quite substantial. 

The purpose of this book is to introduce the readers to the technique of PDF analysis of 

amorphous and crystalline materials by starting from scratch and getting into some 

practical details. Since many of us are familiar with the conventional methods of crystal 

structural analysis that is done in reciprocal space, the notion of using the PDF method for 

the structural study of a crystal may appear strange in the beginning. Actually the PDF is a 

much more intuitive way to characterize the structure than in reciprocal space, particularly 

because we, at least most of us, live in real space! It simply represents the bond lengths and 

other interatomic distances, and by combining these distances in three-dimensions the total 

structure can be reconstructed. 

An important factor that differentiates the PDF method from conventional methods is 

the inclusion of diffuse scattering. The presence of diffuse scattering in the data may not be 

obvious, particularly for the powder diffraction data. But it is always present, at least in the 

form of thermal diffuse scattering. In the case when the crystal lattice is not perfect 

additional diffuse scattering is produced by the defects, and it provides important 

information regarding the nature and spatial distribution of the defects. In some crystals, 

such as the crystals with polarons, these defects arise not because of lattice imperfections 

but due to the interaction of the lattice with electrons. These defects are intrinsic, rather 

than extrinsic. In this book, we included some examples of complex oxides with competing 
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interactions in which local lattice deviations are caused by these interactions. These 
complex oxides represent the class of modem materials of technological importance 
because of their outstanding properties. These properties are intimately connected with the 
local deviations in the lattice, and characterizing these local structures is a crucial step in 
understanding these complex materials. 

The importance of the local structure is well recognized in some fields, particularly in 

the XAFS community. However, because of the technical limitations that the XAFS 
method provides the knowledge of only the nearest neighbors, the local structure usually 
implies the structure defined by the nearest neighbors. On the other hand the intermediate 
or nano-scale structure is equally important in determining the properties of the system. 
The PDF method is a unique probe that provides the information on such intermediate- 
range structure. While the measurement and the data analysis of this method are more 
complex than those for the XAFS technique, with proper training anyone can practice this 
method. Our hope is that this book will spark interests in this method and will play a role of 
introductory document into the field of the local structural research using the PDF method. 
By presenting data analysis equations in some detail we hope too that it will become a 
point of reference on the subject, though these technical Chapters and Appendices may 
make grueling reading. 

As more pulsed neutron and synchrotron radiation sources are constructed the 
opportunity to practice this method is growing rapidly. We hope this method will impact 
wide ranges of materials research fields, from condensed-matter physics and solid-state- 
chemistry to biology and biomedical materials science. 
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